scispace - formally typeset
T

Thomas Tuschl

Researcher at Rockefeller University

Publications -  329
Citations -  113708

Thomas Tuschl is an academic researcher from Rockefeller University. The author has contributed to research in topics: RNA & microRNA. The author has an hindex of 114, co-authored 318 publications receiving 106032 citations. Previous affiliations of Thomas Tuschl include Massachusetts Institute of Technology & Howard Hughes Medical Institute.

Papers
More filters
Journal ArticleDOI

Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells

TL;DR: 21-nucleotide siRNA duplexes provide a new tool for studying gene function in mammalian cells and may eventually be used as gene-specific therapeutics.
Journal ArticleDOI

Identification of novel genes coding for small expressed RNAs.

TL;DR: It is shown that many 21- and 22-nt expressed RNAs, termed microRNAs, exist in invertebrates and vertebrates and that some of these novel RNAs are highly conserved, which suggests that sequence-specific, posttranscriptional regulatory mechanisms mediated by smallRNAs are more general than previously appreciated.
Journal ArticleDOI

Silencing of microRNAs in vivo with ‘antagomirs’

TL;DR: It is shown that a novel class of chemically engineered oligonucleotides, termed ‘antagomirs’, are efficient and specific silencers of endogenous miRNA levels in mice and may represent a therapeutic strategy for silencing miRNAs in disease.
Journal ArticleDOI

RNA interference is mediated by 21- and 22-nucleotide RNAs

TL;DR: In this article, the authors demonstrate that 21 and 22-nt RNA fragments are the sequence-specific mediators of RNA interference in a Drosophila in vitro system, and provide evidence that the direction of dsRNA processing determines whether sense or antisense target RNA can be cleaved by the siRNA-protein complex.
Journal ArticleDOI

A mammalian microRNA expression atlas based on small RNA library sequencing.

TL;DR: A relatively small set of miRNAs, many of which are ubiquitously expressed, account for most of the differences in miRNA profiles between cell lineages and tissues.