scispace - formally typeset
Search or ask a question
Institution

Bergen University College

Education
About: Bergen University College is a based out in . It is known for research contribution in the topics: Population & Health care. The organization has 1313 authors who have published 3898 publications receiving 74754 citations.


Papers
More filters
Journal ArticleDOI
Bin Zhou1, James Bentham1, Mariachiara Di Cesare2, Honor Bixby1  +787 moreInstitutions (231)
TL;DR: The number of adults with raised blood pressure increased from 594 million in 1975 to 1·13 billion in 2015, with the increase largely in low-income and middle-income countries, and the contributions of changes in prevalence versus population growth and ageing to the increase.

1,573 citations

Journal ArticleDOI
K. Aamodt1, A. Abrahantes Quintana, R. Achenbach2, S. Acounis3  +1151 moreInstitutions (76)
TL;DR: The Large Ion Collider Experiment (ALICE) as discussed by the authors is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model.
Abstract: ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.

1,218 citations

Journal ArticleDOI
K. Aamodt1, N. Abel2, A. Abrahantes Quintana, A. Acero  +989 moreInstitutions (76)
TL;DR: In this paper, the production of mesons containing strange quarks (KS, φ) and both singly and doubly strange baryons (,, and − + +) are measured at mid-rapidity in pp collisions at √ s = 0.9 TeV with the ALICE experiment at the LHC.

1,176 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis, and provide a starting point for people interested in experimenting and perhaps contributing to the field of machine learning for medical imaging.
Abstract: What has happened in machine learning lately, and what does it mean for the future of medical image analysis? Machine learning has witnessed a tremendous amount of attention over the last few years. The current boom started around 2009 when so-called deep artificial neural networks began outperforming other established models on a number of important benchmarks. Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from image analysis to natural language processing, and widely deployed in academia and industry. These developments have a huge potential for medical imaging technology, medical data analysis, medical diagnostics and healthcare in general, slowly being realized. We provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis. As this has become a very broad and fast expanding field we will not survey the entire landscape of applications, but put particular focus on deep learning in MRI. Our aim is threefold: (i) give a brief introduction to deep learning with pointers to core references; (ii) indicate how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction; (iii) provide a starting point for people interested in experimenting and perhaps contributing to the field of machine learning for medical imaging by pointing out good educational resources, state-of-the-art open-source code, and interesting sources of data and problems related medical imaging.

991 citations

Journal ArticleDOI
Andrew Shepherd1, Erik R. Ivins2, Eric Rignot3, Ben Smith4, Michiel R. van den Broeke, Isabella Velicogna3, Pippa L. Whitehouse5, Kate Briggs1, Ian Joughin4, Gerhard Krinner6, Sophie Nowicki7, Tony Payne8, Ted Scambos9, Nicole Schlegel2, Geruo A3, Cécile Agosta, Andreas P. Ahlstrøm10, Greg Babonis11, Valentina R. Barletta12, Alejandro Blazquez, Jennifer Bonin13, Beata Csatho11, Richard I. Cullather7, Denis Felikson14, Xavier Fettweis, René Forsberg12, Hubert Gallée6, Alex S. Gardner2, Lin Gilbert15, Andreas Groh16, Brian Gunter17, Edward Hanna18, Christopher Harig19, Veit Helm20, Alexander Horvath21, Martin Horwath16, Shfaqat Abbas Khan12, Kristian K. Kjeldsen10, Hannes Konrad1, Peter L. Langen22, Benoit S. Lecavalier23, Bryant D. Loomis7, Scott B. Luthcke7, Malcolm McMillan1, Daniele Melini24, Sebastian H. Mernild25, Sebastian H. Mernild26, Sebastian H. Mernild27, Yara Mohajerani3, Philip Moore28, Jeremie Mouginot3, Jeremie Mouginot6, Gorka Moyano, Alan Muir15, Thomas Nagler, Grace A. Nield5, Johan Nilsson2, Brice Noël, Ines Otosaka1, Mark E. Pattle, W. Richard Peltier29, Nadege Pie14, Roelof Rietbroek30, Helmut Rott, Louise Sandberg-Sørensen12, Ingo Sasgen20, Himanshu Save14, Bernd Scheuchl3, Ernst Schrama31, Ludwig Schröder16, Ki-Weon Seo32, Sebastian B. Simonsen12, Thomas Slater1, Giorgio Spada33, T. C. Sutterley3, Matthieu Talpe9, Lev Tarasov23, Willem Jan van de Berg, Wouter van der Wal31, Melchior van Wessem, Bramha Dutt Vishwakarma34, David N. Wiese2, Bert Wouters 
14 Jun 2018-Nature
TL;DR: This work combines satellite observations of its changing volume, flow and gravitational attraction with modelling of its surface mass balance to show that the Antarctic Ice Sheet lost 2,720 ± 1,390 billion tonnes of ice between 1992 and 2017, which corresponds to an increase in mean sea level of 7.6‚¬3.9 millimetres.
Abstract: The Antarctic Ice Sheet is an important indicator of climate change and driver of sea-level rise. Here we combine satellite observations of its changing volume, flow and gravitational attraction with modelling of its surface mass balance to show that it lost 2,720 ± 1,390 billion tonnes of ice between 1992 and 2017, which corresponds to an increase in mean sea level of 7.6 ± 3.9 millimetres (errors are one standard deviation). Over this period, ocean-driven melting has caused rates of ice loss from West Antarctica to increase from 53 ± 29 billion to 159 ± 26 billion tonnes per year; ice-shelf collapse has increased the rate of ice loss from the Antarctic Peninsula from 7 ± 13 billion to 33 ± 16 billion tonnes per year. We find large variations in and among model estimates of surface mass balance and glacial isostatic adjustment for East Antarctica, with its average rate of mass gain over the period 1992–2017 (5 ± 46 billion tonnes per year) being the least certain.

725 citations


Authors

Showing all 1318 results

NameH-indexPapersCitations
David Richards9557847107
Kristin Fanebust Hetland9145628164
Bjarte Kileng9043827681
Johan Alme8745625059
Jørgen André Lien8341421756
Ketil Røed8338223041
Lars Bo Andersen8044240858
Håvard Helstrup7733922057
Hege Austrheim Erdal7110514978
Mark Peyrot6620417579
Lars E. Kristensen5926810408
Bengt Fridlund5742512222
Ulla Waldenström561479626
Karen Søgaard5628910839
Niels Wedderkopp5521312693
Network Information
Related Institutions (5)
University of Gothenburg
65.2K papers, 2.6M citations

83% related

University of Oslo
97K papers, 3.6M citations

82% related

VU University Amsterdam
75.6K papers, 3.4M citations

82% related

Lund University
124.6K papers, 5M citations

82% related

Uppsala University
107.5K papers, 4.2M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202219
2021735
2020611
2019574
2018416