scispace - formally typeset
Search or ask a question
Institution

Kurchatov Institute

FacilityMoscow, Russia
About: Kurchatov Institute is a facility organization based out in Moscow, Russia. It is known for research contribution in the topics: Plasma & Neutron. The organization has 12493 authors who have published 18321 publications receiving 281837 citations. The organization is also known as: Laboratory No. 2 of the USSR Academy of Sciences & Kurchatov Institute.
Topics: Plasma, Neutron, Magnetic field, Electron, Tokamak


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe the requirements for high reliability in the systems (diagnostics) that provide the measurements in the ITER environment, which is similar to those made on the present-day large tokamaks while the specification of the measurements will be more stringent.
Abstract: In order to support the operation of ITER and the planned experimental programme an extensive set of plasma and first wall measurements will be required. The number and type of required measurements will be similar to those made on the present-day large tokamaks while the specification of the measurements—time and spatial resolutions, etc—will in some cases be more stringent. Many of the measurements will be used in the real time control of the plasma driving a requirement for very high reliability in the systems (diagnostics) that provide the measurements. The implementation of diagnostic systems on ITER is a substantial challenge. Because of the harsh environment (high levels of neutron and gamma fluxes, neutron heating, particle bombardment) diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic design. Extensive design and R&D is needed to prepare the systems. In some cases the environmental difficulties are so severe that new diagnostic techniques are required. a Author to whom any correspondence should be addressed.

309 citations

Journal ArticleDOI
TL;DR: The Structural Materials Science endstation installed at the Kurchatov Synchrotron Radiation Source has been operating in the user mode since 2004 as discussed by the authors, which is primarily devoted to combined structural studies of functional materials with the use of three basic synchrotor hard X-ray techniques, viz., powder Xray diffraction (XRD), Xray absorption spectroscopy (XANES and EXAFS), and small-angle X-rays scattering (SAXS).
Abstract: The Structural Materials Science end-station installed at the Kurchatov Synchrotron Radiation Source has been operating in the user mode since 2004. The facility is primarily devoted to combined structural studies of functional materials with the use of three basic synchrotron hard X-ray techniques, viz., powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XANES and EXAFS) and small-angle X-ray scattering (SAXS). In the present paper, a brief description of the facility and recent developments of its instrumentation are given. Improved research capabilities of the facility are demonstrated with examples of recent experimental results.

304 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of the modified system is studied using proton-proton collision data at center-of-mass energy √s=13 TeV, collected at the LHC in 2015 and 2016.
Abstract: The CMS muon detector system, muon reconstruction software, and high-level trigger underwent significant changes in 2013–2014 in preparation for running at higher LHC collision energy and instantaneous luminosity. The performance of the modified system is studied using proton-proton collision data at center-of-mass energy √s=13 TeV, collected at the LHC in 2015 and 2016. The measured performance parameters, including spatial resolution, efficiency, and timing, are found to meet all design specifications and are well reproduced by simulation. Despite the more challenging running conditions, the modified muon system is found to perform as well as, and in many aspects better than, previously. We dedicate this paper to the memory of Prof. Alberto Benvenuti, whose work was fundamental for the CMS muon detector.

303 citations

Journal ArticleDOI
A. Adare1, S. Afanasiev2, Christine Angela Aidala3, N. N. Ajitanand4  +442 moreInstitutions (49)
TL;DR: For Au + Au collisions at 200 GeV, neutral pion production is measured with good statistics for transverse momentum, pT, and a fivefold suppression is found, which is essentially constant for 5 < pT < 20 GeV/c.
Abstract: For Au + Au collisions at 200 GeV, we measure neutral pion production with good statistics for transverse momentum, p(T), up to 20 GeV/c. A fivefold suppression is found, which is essentially constant for 5 in the parton quenching model. The spectral shape is similar for all collision classes, and the suppression does not saturate in Au + Au collisions.

302 citations

Journal ArticleDOI
M. Ablikim, M. N. Achasov1, M. N. Achasov2, Patrik Adlarson3  +500 moreInstitutions (73)
Abstract: There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESIII and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESIII, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESIII during the remaining operation period of BEPCII. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCII to higher luminosity.

296 citations


Authors

Showing all 12758 results

NameH-indexPapersCitations
A. Artamonov1501858119791
Nikolay Tyurin1421270101170
Pavel Shatalov136109791536
Grigory Safronov133135894610
Alexander Zhokin132132386842
Vladimir Gavrilov131158797505
Dmitry Golubkov130159978751
Victor Kim129128787209
Alexander Nikitenko129115982102
Sergei Bitioukov128108183785
Igor Azhgirey128115983498
Oleg Solovyanov12886774637
Andrey Uzunian128120885703
Sergey Troshin128118284885
Oleg Zenin128838106989
Network Information
Related Institutions (5)
Russian Academy of Sciences
417.5K papers, 4.5M citations

89% related

Moscow State University
123.3K papers, 1.7M citations

88% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

87% related

Forschungszentrum Jülich
35.6K papers, 994.1K citations

87% related

Brookhaven National Laboratory
39.4K papers, 1.7M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202374
2022281
20211,078
20201,464
20191,407
20181,286