scispace - formally typeset
Search or ask a question
Institution

Rehabilitation Institute of Chicago

HealthcareChicago, Illinois, United States
About: Rehabilitation Institute of Chicago is a healthcare organization based out in Chicago, Illinois, United States. It is known for research contribution in the topics: Rehabilitation & Population. The organization has 1398 authors who have published 2855 publications receiving 106428 citations.


Papers
More filters
Journal ArticleDOI
13 Jul 2006-Nature
TL;DR: Initial results for a tetraplegic human using a pilot NMP suggest that NMPs based upon intracortical neuronal ensemble spiking activity could provide a valuable new neurotechnology to restore independence for humans with paralysis.
Abstract: Neuromotor prostheses (NMPs) aim to replace or restore lost motor functions in paralysed humans by routeing movement-related signals from the brain, around damaged parts of the nervous system, to external effectors. To translate preclinical results from intact animals to a clinically useful NMP, movement signals must persist in cortex after spinal cord injury and be engaged by movement intent when sensory inputs and limb movement are long absent. Furthermore, NMPs would require that intention-driven neuronal activity be converted into a control signal that enables useful tasks. Here we show initial results for a tetraplegic human (MN) using a pilot NMP. Neuronal ensemble activity recorded through a 96-microelectrode array implanted in primary motor cortex demonstrated that intended hand motion modulates cortical spiking patterns three years after spinal cord injury. Decoders were created, providing a ‘neural cursor’ with which MN opened simulated e-mail and operated devices such as a television, even while conversing. Furthermore, MN used neural control to open and close a prosthetic hand, and perform rudimentary actions with a multi-jointed robotic arm. These early results suggest that NMPs based upon intracortical neuronal ensemble spiking activity could provide a valuable new neurotechnology to restore independence for humans with paralysis. The cover shows Matt Nagle, first participant in the BrainGate pilot clinical trial. He is unable to move his arms or legs following cervical spinal cord injury. Researchers at the Department of Neuroscience at Brown University, working with biotech company Cyberkinetics and 3 other institutions, demonstrate that movement-related signals can be relayed from the brain via an implanted BrainGate chip, allowing the patient to drive a computer screen cursor and activate simple robotic devices. Such neuromotor prostheses could pave the way towards systems to replace or restore lost motor function in paralysed humans. Prior to this advance, this type of work has been performed chiefly in monkeys. The latest example of such research has achieved a large increase in speed over current devices, enhancing the prospects for clinically viable brain-machine interfaces.

3,120 citations

Journal ArticleDOI
TL;DR: Evaluation of the core should be dynamic, and include evaluation of the specific functions (trunk control over the planted leg) and directions of motions (three-planar activity).
Abstract: The importance of function of the central core of the body for stabilisation and force generation in all sports activities is being increasingly recognised. 'Core stability' is seen as being pivotal for efficient biomechanical function to maximise force generation and minimise joint loads in all types of activities ranging from running to throwing. However, there is less clarity about what exactly constitutes 'the core', either anatomically or physiologically, and physical evaluation of core function is also variable. 'Core stability' is defined as the ability to control the position and motion of the trunk over the pelvis to allow optimum production, transfer and control of force and motion to the terminal segment in integrated athletic activities. Core muscle activity is best understood as the pre-programmed integration of local, single-joint muscles and multi-joint muscles to provide stability and produce motion. This results in proximal stability for distal mobility, a proximal to distal patterning of generation of force, and the creation of interactive moments that move and protect distal joints. Evaluation of the core should be dynamic, and include evaluation of the specific functions (trunk control over the planted leg) and directions of motions (three-planar activity). Rehabilitation should include the restoring of the core itself, but also include the core as the base for extremity function.

1,282 citations

Journal ArticleDOI
11 Feb 2009-JAMA
TL;DR: The results suggest that reinnervated muscles can produce sufficient EMG information for real-time control of advanced artificial arms, as well as improving the function of prosthetic arms.
Abstract: Context Improving the function of prosthetic arms remains a challenge, because access to the neural-control information for the arm is lost during amputation. A surgical technique called targeted muscle reinnervation (TMR) transfers residual arm nerves to alternative muscle sites. After reinnervation, these target muscles produce electromyogram (EMG) signals on the surface of the skin that can be measured and used to control prosthetic arms. Objective To assess the performance of patients with upper-limb amputation who had undergone TMR surgery, using a pattern-recognition algorithm to decode EMG signals and control prosthetic-arm motions. Design, Setting, and Participants Study conducted between January 2007 and January 2008 at the Rehabilitation Institute of Chicago among 5 patients with shoulder-disarticulation or transhumeral amputations who underwent TMR surgery between February 2002 and October 2006 and 5 control participants without amputation. Surface EMG signals were recorded from all participants and decoded using a pattern-recognition algorithm. The decoding program controlled the movement of a virtual prosthetic arm. All participants were instructed to perform various arm movements, and their abilities to control the virtual prosthetic arm were measured. In addition, TMR patients used the same control system to operate advanced arm prosthesis prototypes. Main Outcome Measure Performance metrics measured during virtual arm movements included motion selection time, motion completion time, and motion completion (“success”) rate. Results The TMR patients were able to repeatedly perform 10 different elbow, wrist, and hand motions with the virtual prosthetic arm. For these patients, the mean motion selection and motion completion times for elbow and wrist movements were 0.22 seconds (SD, 0.06) and 1.29 seconds (SD, 0.15), respectively. These times were 0.06 seconds and 0.21 seconds longer than the mean times for control participants. For TMR patients, the mean motion selection and motion completion times for hand-grasp patterns were 0.38 seconds (SD, 0.12) and 1.54 seconds (SD, 0.27), respectively. These patients successfully completed a mean of 96.3% (SD, 3.8) of elbow and wrist movements and 86.9% (SD, 13.9) of hand movements within 5 seconds, compared with 100% (SD, 0) and 96.7% (SD, 4.7) completed by controls. Three of the patients were able to demonstrate the use of this control system in advanced prostheses, including motorized shoulders, elbows, wrists, and hands. Conclusion These results suggest that reinnervated muscles can produce sufficient EMG information for real-time control of advanced artificial arms.

920 citations

Journal ArticleDOI
26 Sep 2007-PLOS ONE
TL;DR: An ideal-observer model is formulated that infers whether two sensory cues originate from the same location and that also estimates their location(s) and accurately predicts the nonlinear integration of cues by human subjects in two auditory-visual localization tasks.
Abstract: Perceptual events derive their significance to an animal from their meaning about the world, that is from the information they carry about their causes. The brain should thus be able to efficiently infer the causes underlying our sensory events. Here we use multisensory cue combination to study causal inference in perception. We formulate an ideal-observer model that infers whether two sensory cues originate from the same location and that also estimates their location(s). This model accurately predicts the nonlinear integration of cues by human subjects in two auditory-visual localization tasks. The results show that indeed humans can efficiently infer the causal structure as well as the location of causes. By combining insights from the study of causal inference with the ideal-observer approach to sensory cue combination, we show that the capacity to infer causal structure is not limited to conscious, high-level cognition; it is also performed continually and effortlessly in perception.

873 citations

Journal ArticleDOI
TL;DR: Results of validation studies to date suggest that the IASP/CRPS diagnostic criteria are adequately sensitive; however, both internal and external validation research suggests that utilization of these criteria causes problems of overdiagnosis due to poor specificity.
Abstract: This topical update reports recent progress in the international effort to develop a more accurate and valid diagnostic criteria for complex regional pain syndrome (CRPS). The diagnostic entity of CRPS (published in the International Association for the Study of Pain's Taxonomy monograph in 1994; International Association for the Study of Pain [IASP]) was intended to be descriptive, general, and not imply etiopathology, and had the potential to lead to improved clinical communication and greater generalizability across research samples. Unfortunately, realization of this potential has been limited by the fact that these criteria were based solely on consensus and utilization of the criteria in the literature has been sporadic at best. As a consequence, the full potential benefits of the IASP criteria have not been realized. Consensus-derived criteria that are not subsequently validated may lead to over- or underdiagnosis, and will reduce the ability to provide timely and optimal treatment. Results of validation studies to date suggest that the IASP/CRPS diagnostic criteria are adequately sensitive; however, both internal and external validation research suggests that utilization of these criteria causes problems of overdiagnosis due to poor specificity. This update summarizes the latest international consensus group's action in Budapest, Hungary to approve and codify empirically validated, statistically derived revisions of the IASP criteria for CRPS.

864 citations


Authors

Showing all 1412 results

NameH-indexPapersCitations
Jordan Grafman10954654241
Scott L. Delp9839236848
David Lloyd90101737691
Richard L. Lieber7938423461
Andrew A. Biewener7121014592
Thomas J. Schnitzer6925127256
James L. Patton6629416414
David Green6568317601
James P. Kelly6517021841
David J. Reinkensmeyer6524414429
William Z. Rymer6335813696
A. Vania Apkarian6318719717
Allen W. Heinemann6145715487
Konrad P. Kording6133915943
Daniel M. Corcos6122012256
Network Information
Related Institutions (5)
Drexel University
51.4K papers, 1.9M citations

83% related

Oregon Health & Science University
65.1K papers, 3.3M citations

83% related

University of Pittsburgh
201K papers, 9.6M citations

83% related

Boston University
119.6K papers, 6.2M citations

82% related

University of Utah
124K papers, 5.2M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20237
202212
2021171
2020137
2019101
2018117