scispace - formally typeset
Search or ask a question
Institution

Tokai University

EducationTokyo, Tôkyô, Japan
About: Tokai University is a education organization based out in Tokyo, Tôkyô, Japan. It is known for research contribution in the topics: Transplantation & Population. The organization has 13749 authors who have published 26451 publications receiving 513500 citations. The organization is also known as: Tōkai Daigaku & Tōkai.
Topics: Transplantation, Population, Cancer, Laser, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: In patients with atrial fibrillation, apixaban was superior to warfarin in preventing stroke or systemic embolism, caused less bleeding, and resulted in lower mortality.
Abstract: A b s t r ac t Background Vitamin K antagonists are highly effective in preventing stroke in patients with atrial fibrillation but have several limitations. Apixaban is a novel oral direct factor Xa inhibitor that has been shown to reduce the risk of stroke in a similar population in comparison with aspirin. Methods In this randomized, double-blind trial, we compared apixaban (at a dose of 5 mg twice daily) with warfarin (target international normalized ratio, 2.0 to 3.0) in 18,201 patients with atrial fibrillation and at least one additional risk factor for stroke. The primary outcome was ischemic or hemorrhagic stroke or systemic em - bolism. The trial was designed to test for noninferiority, with key secondary objec - tives of testing for superiority with respect to the primary outcome and to the rates of major bleeding and death from any cause. Results The median duration of follow-up was 1.8 years. The rate of the primary outcome was 1.27% per year in the apixaban group, as compared with 1.60% per year in the war - farin group (hazard ratio with apixaban, 0.79; 95% confidence interval (CI), 0.66 to 0.95; P<0.001 for noninferiority; P = 0.01 for superiority). The rate of major bleeding was 2.13% per year in the apixaban group, as compared with 3.09% per year in the warfarin group (hazard ratio, 0.69; 95% CI, 0.60 to 0.80; P<0.001), and the rates of death from any cause were 3.52% and 3.94%, respectively (hazard ratio, 0.89; 95% CI, 0.80 to 0.99; P = 0.047). The rate of hemorrhagic stroke was 0.24% per year in the apixaban group, as compared with 0.47% per year in the warfarin group (hazard ra - tio, 0.51; 95% CI, 0.35 to 0.75; P<0.001), and the rate of ischemic or uncertain type of stroke was 0.97% per year in the apixaban group and 1.05% per year in the warfarin group (hazard ratio, 0.92; 95% CI, 0.74 to 1.13; P = 0.42). Conclusions In patients with atrial fibrillation, apixaban was superior to warfarin in preventing stroke or systemic embolism, caused less bleeding, and resulted in lower mortality. (Funded by Bristol-Myers Squibb and Pfizer; ARISTOTLE ClinicalTrials.gov number, NCT00412984.)

7,154 citations

Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations

Journal ArticleDOI
Y. Fukuda1, T. Hayakawa1, E. Ichihara1, Kunio Inoue1, K. Ishihara1, H. Ishino1, Yoshitaka Itow1, Takaaki Kajita1, J. Kameda1, S. Kasuga1, Ken-ichiro Kobayashi1, Yohei Kobayashi1, Yusuke Koshio1, M. Miura1, Masayuki Nakahata1, S. Nakayama1, A. Okada1, Ko Okumura1, N. Sakurai1, Masato Shiozawa1, Yoshihiro Suzuki1, Y. Takeuchi1, Y. Totsuka1, Shinya Yamada1, M. Earl2, Alec Habig2, E. Kearns2, M. D. Messier2, Kate Scholberg2, J. L. Stone2, Lawrence Sulak2, C. W. Walter2, M. Goldhaber3, T. Barszczxak4, D. Casper4, W. Gajewski4, P. G. Halverson4, J. Hsu4, W. R. Kropp4, L. R. Price4, Frederick Reines4, Michael B. Smy4, Henry W. Sobel4, Mark R. Vagins4, K. S. Ganezer5, W. E. Keig5, R. W. Ellsworth6, S. Tasaka7, J. W. Flanagan8, A. Kibayashi8, John G. Learned8, S. Matsuno8, V. J. Stenger8, D. Takemori8, T. Ishii, Junichi Kanzaki, T. Kobayashi, S. Mine, K. Nakamura, K. Nishikawa, Yuichi Oyama, A. Sakai, Makoto Sakuda, Osamu Sasaki, S. Echigo9, M. Kohama9, A. T. Suzuki9, Todd Haines10, Todd Haines4, E. Blaufuss11, B. K. Kim11, R. Sanford11, R. Svoboda11, M. L. Chen12, Z. Conner13, Z. Conner12, J. A. Goodman12, G. W. Sullivan12, J. Hill14, C. K. Jung14, K. Martens14, C. Mauger14, C. McGrew14, E. Sharkey14, B. Viren14, C. Yanagisawa14, W. Doki15, Kazumasa Miyano15, H. Okazawa15, C. Saji15, M. Takahata15, Y. Nagashima16, M. Takita16, Takashi Yamaguchi16, Minoru Yoshida16, Soo-Bong Kim17, M. Etoh18, K. Fujita18, Akira Hasegawa18, Takehisa Hasegawa18, S. Hatakeyama18, T. Iwamoto18, M. Koga18, Tomoyuki Maruyama18, Hiroshi Ogawa18, J. Shirai18, A. Suzuki18, F. Tsushima18, Masatoshi Koshiba1, M. Nemoto19, Kyoshi Nishijima19, T. Futagami20, Y. Hayato20, Y. Kanaya20, K. Kaneyuki20, Y. Watanabe20, D. Kielczewska4, D. Kielczewska21, R. A. Doyle22, J. S. George22, A. L. Stachyra22, L. Wai22, L. Wai23, R. J. Wilkes22, K. K. Young22 
Abstract: We present an analysis of atmospheric neutrino data from a 33.0 kton yr (535-day) exposure of the Super-Kamiokande detector. The data exhibit a zenith angle dependent deficit of muon neutrinos which is inconsistent with expectations based on calculations of the atmospheric neutrino flux. Experimental biases and uncertainties in the prediction of neutrino fluxes and cross sections are unable to explain our observation. The data are consistent, however, with two-flavor ${\ensuremath{ u}}_{\ensuremath{\mu}}\ensuremath{\leftrightarrow}{\ensuremath{ u}}_{\ensuremath{\tau}}$ oscillations with ${sin}^{2}2\ensuremath{\theta}g0.82$ and $5\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}l\ensuremath{\Delta}{m}^{2}l6\ifmmode\times\else\texttimes\fi{}1{0}^{\ensuremath{-}3}\mathrm{eV}{}^{2}$ at 90% confidence level.

3,784 citations

Journal ArticleDOI
F. Kunst1, Naotake Ogasawara2, Ivan Moszer1, Alessandra M. Albertini3  +151 moreInstitutions (30)
20 Nov 1997-Nature
TL;DR: Bacillus subtilis is the best-characterized member of the Gram-positive bacteria, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
Abstract: Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.

3,753 citations


Authors

Showing all 13813 results

NameH-indexPapersCitations
Yusuke Nakamura1792076160313
Michael G. Rosenfeld178504107707
Ira Pastan1601286110069
Ko Okumura134105767530
Masatsugu Hori11387448028
Toshiro Fujita10278846116
Carmine Zoccali9981336774
Agnes B. Fogo9857838840
John W. Baynes9322232818
Takao Shimizu9351835706
Koji Uchida9142331663
Mitsuhiko Ikura8931634132
George R. Pettit8984831759
Gillian P. Bates8925747820
Edward S. Mocarski8830524356
Network Information
Related Institutions (5)
Nagoya University
128.2K papers, 3.2M citations

91% related

Hokkaido University
115.4K papers, 2.6M citations

91% related

Hiroshima University
69.2K papers, 1.4M citations

91% related

Keio University
71.3K papers, 1.5M citations

90% related

University of Tsukuba
79.4K papers, 1.9M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202324
202286
20211,172
20201,141
20191,108
2018976