scispace - formally typeset
Search or ask a question
JournalISSN: 2052-1545

Inorganic chemistry frontiers 

Royal Society of Chemistry
About: Inorganic chemistry frontiers is an academic journal published by Royal Society of Chemistry. The journal publishes majorly in the area(s): Chemistry & Catalysis. It has an ISSN identifier of 2052-1545. Over the lifetime, 3235 publications have been published receiving 61593 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The diverse applications of nanozymes, which range from sensing, imaging, and therapeutics, to logic gates, pollutant removal, water treatment, etc, are discussed, and the current challenges facing nanozyme research are addressed.
Abstract: In the past few decades, researchers have developed lots of artificial enzymes with various materials to mimic the structures and functions of natural enzymes. Recently, nanozymes, nanomaterials with enzyme-like characteristics, are emerging as novel artificial enzymes, and attracting researchers’ enormous interest. Remarkable advances have been made in the area of nanozymes due to their unique properties compared with natural enzymes and classic artificial enzymes. Until now, lots of nanomaterials have been studied to mimic various natural enzymes for wide applications. To highlight the recent progress of nanozymes (especially in bionanotechnology), here we discuss the diverse applications of nanozymes, which range from sensing, imaging, and therapeutics, to logic gates, pollutant removal, water treatment, etc. Finally, we address the current challenges facing nanozyme research as well as possible directions to fulfill their great potential in future.

474 citations

Journal ArticleDOI
TL;DR: In this paper, a review of metal-organic frameworks (MOFs) for environmental remediation under visible light, including wastewater treatment, air purification and disinfection, is presented, where a series of strategies have been designed to modify and regulate pristine MOFs for enhanced photocatalytic performance, such as ligand functionalization, mixed-metal/linker strategy, metal ion/ligand immobilization, dye sensitization, carbon material decoration, semiconductor coupling, MOF/COF coupling, carrier loading and magnetic recycling.
Abstract: Visible light-induced photocatalysis is a promising way for environmental remediation due to efficient utilization of solar energy. Recently, metal–organic frameworks (MOFs) have attracted increasing attention in the field of photocatalysis. In comparison with traditional metal oxide semiconductors, MOFs have many advantages, such as high specific surface area, rich topology and easily tunable porous structure. In this review, we aim to summarize and illustrate recent advances in MOF-based photocatalysis for environmental remediation under visible light, including wastewater treatment, air purification and disinfection. A series of strategies have been designed to modify and regulate pristine MOFs for enhanced photocatalytic performance, such as ligand functionalization, mixed-metal/linker strategy, metal ion/ligand immobilization, dye sensitization, metal nanoparticle loading, carbon material decoration, semiconductor coupling, MOF/COF coupling, carrier loading and magnetic recycling. The above modifications may result in extended visible light absorption, efficient generation, separation and transfer of photogenerated charges, as well as good recyclability. However, there are still many challenges and obstacles. In order to meet the requirements of using MOF photocatalysis as a friendly and stable technology for low-cost practical applications, its future development prospects are also discussed.

326 citations

Journal ArticleDOI
TL;DR: In this paper, a critical review mainly focuses on the current progress of 2D layered nanomaterials in gas-sensing applications and the optimized strategies for improving their performance.
Abstract: Owing to the unique thickness dependent physical and chemical properties, two-dimensional (2D) layered nanomaterials have received tremendous attention and shown great potential in the fabrication of high-performance electronic/optoelectronic devices. Notably, the implication of 2D nanomaterials in the gas-sensing field has also drawn considerable attention but few related review studies have been reported. This critical review mainly focuses on the current progress of 2D layered nanomaterials in gas-sensing applications. Firstly, we describe the basic attributes of 2D layered nanostructures and discuss the fundamentals of their gas-sensing applications. Secondly, we have numerated recent gas-sensing studies on typical 2D layered nanomaterials, including graphene, MoS2, MoSe2, WS2, SnS2, black phosphorus, and others. Particularly, the optimized strategies for improving their gas-sensing performances are also discussed here. Finally, we conclude this review with some perspectives and the outlook on future advances in this field.

289 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent developments of radical reactions involving various carbon-centered radicals through photoredox processes mediated by Ru- and Ir-based photocatalysts is presented.
Abstract: Photoredox catalysis by well-known ruthenium(II) polypyridine complexes and the relevant Ir cyclometalated derivatives has become a powerful tool for redox reactions in synthetic organic chemistry, because they can effectively catalyze single-electron-transfer (SET) processes by irradiation with visible light. Remarkably, since 2008, this photocatalytic system has gained importance in radical reactions from the viewpoint of not only a useful and selective protocol but also green chemistry. In this review, we will describe recent developments of radical reactions involving various carbon-centered radicals through photoredox processes mediated by Ru- and Ir-based photocatalysts.

288 citations

Journal ArticleDOI
Yuanyuan Zhang1, Xiao Feng1, Shuai Yuan1, Junwen Zhou1, Bo Wang1 
TL;DR: In this article, a review of metal-organic framework (MOF)-polymer composite membranes including MOF-based mixed-matrix membranes (MMMs) and polymer supported MOF membranes is presented.
Abstract: Membrane technology has attracted tremendous attention in the field of gas separation due to its low cost and energy consumption. Polymer membranes are used in some industrial-scale gas separation processes, however, they often suffer a trade-off between permeability and selectivity. To overcome this limitation, porous materials with molecular sieve properties have been combined with polymers to give membranes with enhanced gas separation performance. Metal–organic frameworks (MOFs) are nanoporous materials possessing ultrahigh porosity, large surface area, structural diversity and rich functionalities, which make them promising candidates for gas separation. This review primarily focuses on the fabrication methods of MOF–polymer composite membranes including MOF-based mixed-matrix membranes (MMMs) and polymer supported MOF membranes. Recent progress in MOF membrane fabrication, incorporating the challenges and difficulties faced, are presented. Furthermore, corresponding solutions and strategies are given in detail to offer instructions to fabricate membranes with ideal morphology and performance.

262 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023434
2022697
2021456
2020440
2019387
2018348