scispace - formally typeset
Journal ArticleDOI

A global biome model based on plant physiology and dominance, soil properties and climate

TLDR
A model to predict global patterns in vegetation physiognomy was developed from physiological considera- tions influencing the distributions of different functional types of plant in a given environment, and selected the potentially dominant types from among them as discussed by the authors.
Abstract
A model to predict global patterns in vegetation physiognomy was developed from physiological considera- tions influencing the distributions of different functional types of plant. Primary driving variables are mean coldest- month temperature, annual accumulated temeprature over 5"C, and a drought index incorporating the seasonality of precipitation and the available water capacity of the soil. The model predicts which plant types can occur in a given environment, and selects the potentially dominant types from among them. Biomes arise as combinations of domi- nant types. Global environmental data were supplied as monthly means of temperature, precipitation and sunshine (interpolated to a global 0.5" grid, with a lapse-rate correc-

read more

Citations
More filters
Journal ArticleDOI

Predictive habitat distribution models in ecology

TL;DR: A review of predictive habitat distribution modeling is presented, which shows that a wide array of models has been developed to cover aspects as diverse as biogeography, conservation biology, climate change research, and habitat or species management.
Journal ArticleDOI

Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?

TL;DR: In this paper, a hierarchical modeling framework is proposed through which some of these limitations can be addressed within a broader, scale-dependent framework, and it is proposed that, although the complexity of the natural system presents fundamental limits to predictive modelling, the bioclimate envelope approach can provide a useful first approximation as to the potentially dramatic impact of climate change on biodiversity.
Journal ArticleDOI

Investigating soil moisture-climate interactions in a changing climate: A review

TL;DR: In this paper, the authors provide a synthesis of past research on the role of soil moisture for the climate system, based both on modelling and observational studies, focusing on soil moisture-temperature and soil moistureprecipitation feedbacks, and their possible modifications with climate change.
Journal ArticleDOI

Carbon pools and flux of global forest ecosystems.

TL;DR: Slowing deforestation, combined with an increase in forestation and other management measures to improve forest ecosystem productivity, could conserve or sequester significant quantities of carbon.
Book

Principles of Terrestrial Ecosystem Ecology

TL;DR: In this paper, the Ecosystem Concept is used to describe the Earth's Climate System and Geology and Soils, and the ecosystem concept is used for managing and sustaining ecosystems.
References
More filters
Journal ArticleDOI

A Coefficient of agreement for nominal Scales

TL;DR: In this article, the authors present a procedure for having two or more judges independently categorize a sample of units and determine the degree, significance, and significance of the units. But they do not discuss the extent to which these judgments are reproducible, i.e., reliable.
Book

Physiological Plant Ecology

TL;DR: Life in the Solar System, and Beyond, and beyond, and In the Right Place at the Right Time.
Journal ArticleDOI

Climate and life

Book ChapterDOI

Stomatal Control of Transpiration: Scaling Up from Leaf to Region

TL;DR: A wide variety of formulae have been developed for estimating evaporation from vegetation that are based entirely on weather variables and take no account at all of the species composition or stomatal properties of the transpiring vegetation.
Related Papers (5)