scispace - formally typeset
Journal ArticleDOI

Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model

TLDR
The LPJ model as mentioned in this paper combines process-based, large-scale representations of terrestrial vegetation dynamics and land-atmosphere carbon and water exchanges in a modular framework, including feedback through canopy conductance between photosynthesis and transpiration and interactive coupling between these 'fast' processes and other ecosystem processes.
Abstract
The Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) combines process-based, large-scale representations of terrestrial vegetation dynamics and land-atmosphere carbon and water exchanges in a modular framework. Features include feedback through canopy conductance between photosynthesis and transpiration and interactive coupling between these 'fast' processes and other ecosystem processes including resource competition, tissue turnover, population dynamics, soil organic matter and litter dynamics and fire disturbance. Ten plants functional types (PFTs) are differentiated by physiological, morphological, phenological, bioclimatic and fire-response attributes. Resource competition and differential responses to fire between PFTs influence their relative fractional cover from year to year. Photosynthesis, evapotranspiration and soil water dynamics are modelled on a daily time step, while vegetation structure and PFT population densities are updated annually. Simulations have been made over the industrial period both for specific sites where field measurements were available for model evaluation, and globally on a 0.5degrees x 0.5degrees grid. Modelled vegetation patterns are consistent with observations, including remotely sensed vegetation structure and phenology. Seasonal cycles of net ecosystem exchange and soil moisture compare well with local measurements. Global carbon exchange fields used as input to an atmospheric tracer transport model (TM2) provided a good fit to observed seasonal cycles of CO2 concentration at all latitudes. Simulated inter-annual variability of the global terrestrial carbon balance is in phase with and comparable in amplitude to observed variability in the growth rate of atmospheric CO2 . Global terrestrial carbon and water cycle parameters (pool sizes and fluxes) lie within their accepted ranges. The model is being used to study past, present and future terrestrial ecosystem dynamics, biochemical and biophysical interactions between ecosystems and the atmosphere, and as a component of coupled Earth system models.

read more

Citations
More filters
Journal ArticleDOI

Climate change threats to plant diversity in Europe.

TL;DR: Risks of extinction for European plants may be large, even in moderate scenarios of climate change and despite inter-model variability, according to application of International Union for Conservation of Nature and Natural Resources Red List criteria.
Journal ArticleDOI

TRY - a global database of plant traits

Jens Kattge, +136 more
TL;DR: TRY as discussed by the authors is a global database of plant traits, including morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs, which can be used for a wide range of research from evolutionary biology, community and functional ecology to biogeography.
Book ChapterDOI

Carbon and Other Biogeochemical Cycles

TL;DR: For base year 2010, anthropogenic activities created ~210 (190 to 230) TgN of reactive nitrogen Nr from N2 as discussed by the authors, which is at least 2 times larger than the rate of natural terrestrial creation of ~58 Tg N (50 to 100 Tg nr yr−1) (Table 6.9, Section 1a).
References
More filters
Journal ArticleDOI

Population Biology of Plants.

Journal ArticleDOI

A Biochemical Model of Photosynthetic CO 2 Assimilation in Leaves of C 3 Species

TL;DR: Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves.
Journal ArticleDOI

Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model

TL;DR: Results from a fully coupled, three-dimensional carbon–climate model are presented, indicating that carbon-cycle feedbacks could significantly accelerate climate change over the twenty-first century.
Journal ArticleDOI

On the temperature dependence of soil respiration

Jon Lloyd, +1 more
- 01 Jun 1994 - 
TL;DR: An empirical equation is presented which yields an unbiased estimator of respiration rates over a wide range of temperatures and provides representative estimates of the seasonal cycle of net ecosystem productivity and its effects on atmospheric CO 2.
Journal ArticleDOI

Energy Storage and the Balance of Producers and Decomposers in Ecological Systems

Jerry S. Olson
- 01 Apr 1963 - 
TL;DR: Birch, L. C. Kollros, C. Boggild, O., and J. Keiding as discussed by the authors The linkage map of the house fly, Musca domestic L.
Related Papers (5)