scispace - formally typeset
Open AccessJournal ArticleDOI

BEAST: Bayesian evolutionary analysis by sampling trees

TLDR
BEAST is a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree that provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions.
Abstract
The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented. BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at http://beast-mcmc.googlecode.com/ under the GNU LGPL license. BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Bayesian Phylogenetics with BEAUti and the BEAST 1.7

TL;DR: The Bayesian Evolutionary Analysis by Sampling Trees (BEAST) software package version 1.7 is presented, which implements a family of Markov chain Monte Carlo algorithms for Bayesian phylogenetic inference, divergence time dating, coalescent analysis, phylogeography and related molecular evolutionary analyses.
Journal ArticleDOI

BEAST 2: A Software Platform for Bayesian Evolutionary Analysis

TL;DR: BEAST 2 now has a fully developed package management system that allows third party developers to write additional functionality that can be directly installed to the BEAST 2 analysis platform via a package manager without requiring a new software release of the platform.
Journal ArticleDOI

PartitionFinder: Combined Selection of Partitioning Schemes and Substitution Models for Phylogenetic Analyses

TL;DR: Two new objective methods for the combined selection of best-fit partitioning schemes and nucleotide substitution models are described and implemented in an open-source program, PartitionFinder, which it is hoped will encourage the objective selection of partitions and thus lead to improvements in phylogenetic analyses.
Journal ArticleDOI

Bayesian Inference of Species Trees from Multilocus Data

TL;DR: It is demonstrated that both BEST and the new Bayesian Markov chain Monte Carlo method for the multispecies coalescent have much better estimation accuracy for species tree topology than concatenation, and the method outperforms BEST in divergence time and population size estimation.
References
More filters
Journal ArticleDOI

Equation of state calculations by fast computing machines

TL;DR: In this article, a modified Monte Carlo integration over configuration space is used to investigate the properties of a two-dimensional rigid-sphere system with a set of interacting individual molecules, and the results are compared to free volume equations of state and a four-term virial coefficient expansion.
Journal ArticleDOI

MRBAYES: Bayesian inference of phylogenetic trees

TL;DR: The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo, and an executable is available at http://brahms.rochester.edu/software.html.
Journal ArticleDOI

Monte Carlo Sampling Methods Using Markov Chains and Their Applications

TL;DR: A generalization of the sampling method introduced by Metropolis et al. as mentioned in this paper is presented along with an exposition of the relevant theory, techniques of application and methods and difficulties of assessing the error in Monte Carlo estimates.
Journal ArticleDOI

Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.

TL;DR: A new statistical method for estimating divergence dates of species from DNA sequence data by a molecular clock approach is developed, and this dating may pose a problem for the widely believed hypothesis that the bipedal creatureAustralopithecus afarensis, which lived some 3.7 million years ago, was ancestral to man and evolved after the human-ape splitting.
Journal ArticleDOI

Relaxed Phylogenetics and Dating with Confidence

TL;DR: In this paper, the authors introduce a new approach to perform relaxed phylogenetic analysis, which can be used to estimate phylogenies and divergence times in the face of uncertainty in evolutionary rates and calibration times.
Related Papers (5)