scispace - formally typeset
Journal ArticleDOI

Carbon input by plants into the soil. Review.

Reads0
Chats0
TLDR
It is shown, that only the tracer methods provided adequate results for the whole below-ground C translocation, which included roots, exudates and other organic substances, quickly decomposable by soil microorganisms, and CO 2 produced by root respiration.
Abstract
The methods used for estimating below-ground carbon (C) translocation by plants, and the results obtained for different plant species are reviewed. Three tracer techniques using C isotopes to quantify root-derived C are discussed: pulse labeling, continuous labeling, and a method based on the difference in 13 C natural abundance in C3 and C4 plants. It is shown, that only the tracer methods provided adequate results for the whole below-ground C translocation. This included roots, exudates and other organic substances, quickly decomposable by soil microorganisms, and CO 2 produced by root respiration. Advantages due to coupling of two different tracer techniques are shown. The differences in the below-ground C translocation pattern between plant species (cereals, grasses, and trees) are discussed. Cereals (wheat and barley) transfer 20%-30% of total assimilated C into the soil. Half of this amount is subsequently found in the roots and about one-third in CO2 evolved from the soil by root respiration and microbial utilization of rootborne organic substances. The remaining part of below-ground translocated C is incorporated into the soil microorganisms and soil organic matter. The portion of assimilated C allocated below the ground by cereals decreases during growth and by increasing N fertilization. Pasture plants translocated about 30%-50% of assimilates below-ground, and their translocation patterns were similar to those of crop plants. On average, the total C amounts translocated into the soil by cereals and pasture plants are approximately the same (1500 kg C ha -1 ), when the same growth period is considered. However, during one vegetation period the cereals and grasses allocated beneath the ground about 1500 and 2200kg C ha -1 , respectively. Finally, a simple approach is suggested for a rough calculation of C input into the soil and for root-derived CO 2 efflux from the soil.

read more

Citations
More filters
Journal ArticleDOI

Soil carbon stocks and land use change: a meta analysis

TL;DR: In this article, the influence of land use changes on soil carbon stocks was reviewed and a meta-analysis of these data from 74 publications was conducted, which indicated that soil C stocks decline after land use change from pasture to plantation (−10%), native forest to plantations (−13), native forests to crop (−42), and pasture to crop (+59%), while the reverse process usually increased soil carbon and vice versa.
Journal ArticleDOI

Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review

TL;DR: In this article, a review of the mechanisms that are currently, but often contradictorily or inconsistently, considered to contribute to organic matter (OM) protection against decomposition in temperate soils is presented.
Journal ArticleDOI

The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter

TL;DR: In this paper, an overview is given on the amount of litter input, the proportion of various plant parts and their distribution (below-ground/above-ground), as well as the relative proportion of different plant tissues.
Journal ArticleDOI

Carbon flow in the rhizosphere: carbon trading at the soil–root interface

TL;DR: Due to the importance of rhizodeposition in regulating ecosystem functioning, it is critical that future research focuses on resolving the quantitative importance of the different C and N fluxes operating in the rhizosphere and the ways in which these vary spatially and temporally.
Journal ArticleDOI

Plant and mycorrhizal regulation of rhizodeposition

TL;DR: Evidence is brought together to show that roots can directly regulate most aspects of rhizosphere C flow either by regulating the exudation process itself or by directly regulating the recapture of exudates from soil.
Related Papers (5)