scispace - formally typeset
M

Martin L. Miller

Researcher at University of Cambridge

Publications -  60
Citations -  25189

Martin L. Miller is an academic researcher from University of Cambridge. The author has contributed to research in topics: Cancer & Proteome. The author has an hindex of 28, co-authored 59 publications receiving 19853 citations. Previous affiliations of Martin L. Miller include Technical University of Denmark & Memorial Sloan Kettering Cancer Center.

Papers
More filters
Journal ArticleDOI

The cancer genome atlas pan-cancer analysis project

John N. Weinstein, +379 more
- 01 Oct 2013 - 
TL;DR: The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA with a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages.
Journal Article

The Cancer Genome Atlas Pan-Cancer analysis project

Kyle Chang, +337 more
- 01 Sep 2013 - 
TL;DR: The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels as mentioned in this paper.
Journal ArticleDOI

Genomic Classification of Cutaneous Melanoma

Rehan Akbani, +351 more
- 18 Jun 2015 - 
TL;DR: This clinicopathological and multi-dimensional analysis suggests that the prognosis of melanoma patients with regional metastases is influenced by tumor stroma immunobiology, offering insights to further personalize therapeutic decision-making.
Journal ArticleDOI

Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis

TL;DR: High-resolution mass spectrometry–based proteomics was applied to investigate the proteome and phosphoproteome of the human cell cycle on a global scale and quantified 6027 proteins and 20,443 unique phosphorylation sites and their dynamics, finding that nuclear proteins and proteins involved in regulating metabolic processes have high phosphorylated site occupancy in mitosis, suggesting that these proteins may be inactivated by phosphorylate in mitotic cells.