scispace - formally typeset
Search or ask a question
Institution

Max Planck Society

NonprofitMunich, Germany
About: Max Planck Society is a nonprofit organization based out in Munich, Germany. It is known for research contribution in the topics: Galaxy & Population. The organization has 148289 authors who have published 406224 publications receiving 19522268 citations. The organization is also known as: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. & MPG.


Papers
More filters
Journal ArticleDOI
21 Nov 2012-Neuron
TL;DR: This analysis discloses a remarkable correspondence between the microcircuitry of the cortical column and the connectivity implied by predictive coding and provides some intuitive insights into the functional asymmetries between feedforward and feedback connections and the characteristic frequencies over which they operate.

1,892 citations

Journal ArticleDOI
TL;DR: In this paper, the star formation efficiency (SFE) per unit of gas in 23 nearby galaxies and compare it with expectations from proposed star formation laws and thresholds was measured, and the authors interpreted this decline as a strong dependence of giant molecular cloud (GMC) formation on environment.
Abstract: We measure the star formation efficiency (SFE), the star formation rate (SFR) per unit of gas, in 23 nearby galaxies and compare it with expectations from proposed star formation laws and thresholds. We use H I maps from The H I Nearby Galaxy Survey (THINGS) and derive H2 maps of CO measured by HERA CO-Line Extragalactic Survey and Berkeley-Illinois-Maryland Association Survey of Nearby Galaxies. We estimate the SFR by combining Galaxy Evolution Explorer (GALEX) far-ultraviolet maps and the Spitzer Infrared Nearby Galaxies Survey (SINGS) 24 ?m maps, infer stellar surface density profiles from SINGS 3.6 ?m data, and use kinematics from THINGS. We measure the SFE as a function of the free fall and orbital timescales, midplane gas pressure, stability of the gas disk to collapse (including the effects of stars), the ability of perturbations to grow despite shear, and the ability of a cold phase to form. In spirals, the SFE of H2 alone is nearly constant at (5.25 ? 2.5) ? 10?10 yr?1 (equivalent to an H2 depletion time of 1.9 ? 109 yr) as a function of all of these variables at our 800 pc resolution. Where the interstellar medium (ISM) is mostly H I, however, the SFE decreases with increasing radius in both spiral and dwarf galaxies, a decline reasonably described by an exponential with scale length 0.2r 25-0.25r 25. We interpret this decline as a strong dependence of giant molecular cloud (GMC) formation on environment. The ratio of molecular-to-atomic gas appears to be a smooth function of radius, stellar surface density, and pressure spanning from the H2-dominated to H I-dominated ISM. The radial decline in SFE is too steep to be reproduced only by increases in the free-fall time or orbital time. Thresholds for large-scale instability suggest that our disks are stable or marginally stable and do not show a clear link to the declining SFE. We suggest that ISM physics below the scales that we observe?phase balance in the H I, H2 formation and destruction, and stellar feedback?governs the formation of GMCs from H I.

1,888 citations

Journal ArticleDOI
18 May 2012-Science
TL;DR: This work shows how to identify the crucial atomic structure motif for the industrial Cu/ZnO/Al2O3 methanol synthesis catalyst by using a combination of experimental evidence from bulk, surface-sensitive, and imaging methods collected on real high-performance catalytic systems in combination with density functional theory calculations.
Abstract: Unlike homogeneous catalysts, heterogeneous catalysts that have been optimized through decades are typically so complex and hard to characterize that the nature of the catalytically active site is not known. This is one of the main stumbling blocks in developing rational catalyst design strategies in heterogeneous catalysis. We show here how to identify the crucial atomic structure motif for the industrial Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst. Using a combination of experimental evidence from bulk-, surface-sensitive and imaging methods collected on real high-performance catalytic systems in combination with DFT calculations. We show that the active site consists of Cu steps peppered with Zn atoms, all stabilized by a series of well defined bulk defects and surface species that need jointly to be present for the system to work.

1,888 citations

Journal ArticleDOI
01 Mar 2003-RNA
TL;DR: Guidelines are presented for the identification and annotation of new miRNAs from diverse organisms, particularly so that mi RNAs can be reliably distinguished from other RNAs such as small interfering RNAs.
Abstract: MicroRNAs (miRNAs) are small noncoding RNA gene products about 22 nt long that are processed by Dicer from precursors with a characteristic hairpin secondary structure. Guidelines are presented for the identification and annotation of new miRNAs from diverse organisms, particularly so that miRNAs can be reliably distinguished from other RNAs such as small interfering RNAs. We describe specific criteria for the experimental verification of miRNAs, and conventions for naming miRNAs and miRNA genes. Finally, an online clearinghouse for miRNA gene name assignments is provided by the Rfam database of RNA families.

1,883 citations


Authors

Showing all 148365 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Albert Hofman2672530321405
Graham A. Colditz2611542256034
Michael Grätzel2481423303599
Guido Kroemer2361404246571
George Davey Smith2242540248373
Matthias Mann221887230213
Yi Chen2174342293080
Eric N. Olson206814144586
Ronald M. Evans199708166722
Hans Clevers199793169673
Raymond J. Dolan196919138540
David J. Schlegel193600193972
Simon D. M. White189795231645
George Efstathiou187637156228
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

95% related

Princeton University
146.7K papers, 9.1M citations

94% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

94% related

California Institute of Technology
146.6K papers, 8.6M citations

93% related

Spanish National Research Council
220.4K papers, 7.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202334
2022371
202114,895
202016,697
201916,602
201816,160