scispace - formally typeset
Search or ask a question
Institution

Sher-e-Bangla Agricultural University

EducationDhaka, Bangladesh
About: Sher-e-Bangla Agricultural University is a education organization based out in Dhaka, Bangladesh. It is known for research contribution in the topics: Antioxidant & Glutathione. The organization has 832 authors who have published 983 publications receiving 14618 citations. The organization is also known as: Sher-e-Bangla Krishi Bishshobiddaloy.


Papers
More filters
Journal ArticleDOI
TL;DR: The recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels are reviewed and various approaches being taken to enhance thermotolerance in plants are described.
Abstract: High temperature (HT) stress is a major environmental stress that limits plant growth, metabolism, and productivity worldwide Plant growth and development involve numerous biochemical reactions that are sensitive to temperature Plant responses to HT vary with the degree and duration of HT and the plant type HT is now a major concern for crop production and approaches for sustaining high yields of crop plants under HT stress are important agricultural goals Plants possess a number of adaptive, avoidance, or acclimation mechanisms to cope with HT situations In addition, major tolerance mechanisms that employ ion transporters, proteins, osmoprotectants, antioxidants, and other factors involved in signaling cascades and transcriptional control are activated to offset stress-induced biochemical and physiological alterations Plant survival under HT stress depends on the ability to perceive the HT stimulus, generate and transmit the signal, and initiate appropriate physiological and biochemical changes HT-induced gene expression and metabolite synthesis also substantially improve tolerance The physiological and biochemical responses to heat stress are active research areas, and the molecular approaches are being adopted for developing HT tolerance in plants This article reviews the recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels and describes various approaches being taken to enhance thermotolerance in plants

1,392 citations

Journal ArticleDOI
TL;DR: This review has documented the recent advancement illustrating the harmful effects of ROS, antioxidant defense system involved in ROS detoxification under different abiotic stresses, and molecular cross-talk with other important signal molecules such as reactive nitrogen, sulfur, and carbonyl species.
Abstract: Global climate change and associated adverse abiotic stress conditions, such as drought, salinity, heavy metals, waterlogging, extreme temperatures, oxygen deprivation, etc., greatly influence plant growth and development, ultimately affecting crop yield and quality, as well as agricultural sustainability in general. Plant cells produce oxygen radicals and their derivatives, so-called reactive oxygen species (ROS), during various processes associated with abiotic stress. Moreover, the generation of ROS is a fundamental process in higher plants and employs to transmit cellular signaling information in response to the changing environmental conditions. One of the most crucial consequences of abiotic stress is the disturbance of the equilibrium between the generation of ROS and antioxidant defense systems triggering the excessive accumulation of ROS and inducing oxidative stress in plants. Notably, the equilibrium between the detoxification and generation of ROS is maintained by both enzymatic and nonenzymatic antioxidant defense systems under harsh environmental stresses. Although this field of research has attracted massive interest, it largely remains unexplored, and our understanding of ROS signaling remains poorly understood. In this review, we have documented the recent advancement illustrating the harmful effects of ROS, antioxidant defense system involved in ROS detoxification under different abiotic stresses, and molecular cross-talk with other important signal molecules such as reactive nitrogen, sulfur, and carbonyl species. In addition, state-of-the-art molecular approaches of ROS-mediated improvement in plant antioxidant defense during the acclimation process against abiotic stresses have also been discussed.

1,028 citations

Book ChapterDOI
01 Jan 2012
TL;DR: Recent researches on the mechanisms and possible regulatory roles of ROS in abiotic stress tolerance are summarized to discuss the progress made during the last few decades in improving the oxidative stress tolerance of plants through genetic engineering by different components of ROS detoxification systems in plants.
Abstract: In a persistently changing environment, plants are constantly challenged by various abiotic stresses such as salinity, drought, temperature extremes, heavy metal toxicity, high-light intensity, nutrient deficiency, UV-B radiation, ozone, etc. which cause substantial losses in the yield and quality of a crop. A key sign of such stresses at the molecular level is the accelerated production of reactive oxygen species (ROS) such as singlet oxygen (1O2), superoxide (O2•−), hydrogen peroxide (H2O2) and hydroxyl radicals (OH•). ROS are extremely reactive in nature because they can interact with a number of cellular molecules and metabolites, thereby leading to irreparable metabolic dysfunction and death. Plants have well-developed enzymatic and non-enzymatic scavenging pathways or detoxification systems to counter the deleterious effects of ROS that include the enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST), glutathione peroxidase (GPX) and peroxidases (POX) as well as non-enzymatic compounds such as ascorbate (AsA), glutathione (GSH), carotenoids and tocopherols. In plant cells, specific ROS-producing and scavenging systems are found in different organelles and the ROS-scavenging pathways from different cellular compartments are coordinated. Recent studies in plants have shown that relatively low levels of ROS act as signaling molecules that induce abiotic stress tolerance by regulating the expression of defense genes. Additionally, numerous results have shown that plants with higher levels of antioxidants, whether constitutive or induced, showed greater resistance to different types of environmental stresses. In this chapter we attempt to summarize recent researches on the mechanisms and possible regulatory roles of ROS in abiotic stress tolerance. Further, we discuss the progress made during the last few decades in improving the oxidative stress tolerance of plants through genetic engineering by different components of ROS detoxification systems in plants.

551 citations

Journal ArticleDOI
TL;DR: This review summarizes the recent progress of the research on AsA-GSH pathway in terms of oxidative stress tolerance in plants and focuses on the defense mechanisms as well as molecular interactions.
Abstract: Reactive oxygen species (ROS) generation is a usual phenomenon in a plant both under a normal and stressed condition. However, under unfavorable or adverse conditions, ROS production exceeds the capacity of the antioxidant defense system. Both non-enzymatic and enzymatic components of the antioxidant defense system either detoxify or scavenge ROS and mitigate their deleterious effects. The Ascorbate-Glutathione (AsA-GSH) pathway, also known as Asada–Halliwell pathway comprises of AsA, GSH, and four enzymes viz. ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase, play a vital role in detoxifying ROS. Apart from ROS detoxification, they also interact with other defense systems in plants and protect the plants from various abiotic stress-induced damages. Several plant studies revealed that the upregulation or overexpression of AsA-GSH pathway enzymes and the enhancement of the AsA and GSH levels conferred plants better tolerance to abiotic stresses by reducing the ROS. In this review, we summarize the recent progress of the research on AsA-GSH pathway in terms of oxidative stress tolerance in plants. We also focus on the defense mechanisms as well as molecular interactions.

486 citations

Journal ArticleDOI
TL;DR: In this review, the recent progress in GSH biosynthesis, metabolism and its role in abiotic stress tolerance is discussed.
Abstract: Glutathione (GSH; γ-glutamyl-cysteinyl-glycine) is a small intracellular thiol molecule which is considered as a strong non-enzymatic antioxidant. Glutathione regulates multiple metabolic functions; for example, it protects membranes by maintaining the reduced state of both α-tocopherol and zeaxanthin, it prevents the oxidative denaturation of proteins under stress conditions by protecting their thiol groups, and it serves as a substrate for both glutathione peroxidase and glutathione S-transferase. By acting as a precursor of phytochelatins, GSH helps in the chelating of toxic metals/metalloids which are then transported and sequestered in the vacuole. The glyoxalase pathway (consisting of glyoxalase I and glyoxalase II enzymes) for detoxification of methylglyoxal, a cytotoxic molecule, also requires GSH in the first reaction step. For these reasons, much attention has recently been directed to elucidation of the role of this molecule in conferring tolerance to abiotic stress. Recently, this molecule has drawn much attention because of its interaction with other signaling molecules and phytohormones. In this review, we have discussed the recent progress in GSH biosynthesis, metabolism and its role in abiotic stress tolerance.

415 citations


Authors

Showing all 836 results

Network Information
Related Institutions (5)
University of Dhaka
9.8K papers, 136.4K citations

76% related

Indian Agricultural Research Institute
9.1K papers, 188.4K citations

75% related

Indian Council of Agricultural Research
13.6K papers, 149.9K citations

75% related

University of Hohenheim
16.4K papers, 567.3K citations

74% related

International Rice Research Institute
5.1K papers, 275.8K citations

74% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20228
2021188
2020188
2019128
201877