scispace - formally typeset
Search or ask a question
JournalISSN: 1866-7511

Arabian Journal of Geosciences 

Springer Science+Business Media
About: Arabian Journal of Geosciences is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Geology & Environmental science. It has an ISSN identifier of 1866-7511. Over the lifetime, 10828 publications have been published receiving 90798 citations. The journal is also known as: Maǧallaẗ al-’arabiyyaẗ li-l-’ulūm al-ǧiyūlūǧiyyaẗ.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a standard methodology has been applied to delineate groundwater resource potential zonation based on integrated analytical hierarchy process (AHP), geographic information system (GIS), and remote sensing (RS) techniques in Kurdistan plain, Iran.
Abstract: Multi-criteria decision analysis (MCDA) as an advantageous tool has been applied by various researchers to improve their management ability. Management of groundwater resource, especially under data-scarce and arid areas, encountered a lot of problems and issues which drives the planers to use of MCDA. In this research, a standard methodology has been applied to delineate groundwater resource potential zonation based on integrated analytical hierarchy process (AHP), geographic information system (GIS), and remote sensing (RS) techniques in Kurdistan plain, Iran. At first, the effective thematic layers on the groundwater potential such as rainfall, lithology, drainage density, lineament density, and slope percent were derived from the spatial geodatabase. Then, the assigned weights of thematic layers based on expert knowledge were normalized by eigenvector technique of AHP. To prepare the groundwater potential index, the weighted linear combination (WLC) method was applied in GIS. Finally, the receiver operating characteristic (ROC) curve was drawn for groundwater potential map, and the area under curve (AUC) was computed. Results indicated that the rainfall and slope percent factors have taken the highest and lowest weights, respectively. Validation of results showed that the AHP method (AUC = 73.66 %) performed fairly good predication accuracy. Such findings revealed that in the regions suffering from data scarcity through the MCDM methodology, the planners would be able to having accurate knowledge on groundwater resources based on geospatial data analysis. Therefore, the developing scenario for future planning of groundwater exploration can be achieved in an efficient manner.

389 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area.
Abstract: The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning.

365 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared the results of two artificial neural network (ANN) algorithms, i.e., multilayer perceptron (MLP) and radial basic function (RBF) for spatial prediction of landslide susceptibility in Vaz Watershed, Iran.
Abstract: Landslide susceptibility and hazard assessments are the most important steps in landslide risk mapping. The main objective of this study was to investigate and compare the results of two artificial neural network (ANN) algorithms, i.e., multilayer perceptron (MLP) and radial basic function (RBF) for spatial prediction of landslide susceptibility in Vaz Watershed, Iran. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 136 landside locations were constructed from various sources. Then the landslide inventory map was randomly split into a training dataset 70 % (95 landslide locations) for training the ANN model and the remaining 30 % (41 landslides locations) was used for validation purpose. Nine landslide conditioning factors such as slope, slope aspect, altitude, land use, lithology, distance from rivers, distance from roads, distance from faults, and rainfall were constructed in geographical information system. In this study, both MLP and RBF algorithms were used in artificial neural network model. The results showed that MLP with Broyden–Fletcher–Goldfarb–Shanno learning algorithm is more efficient than RBF in landslide susceptibility mapping for the study area. Finally the landslide susceptibility maps were validated using the validation data (i.e., 30 % landslide location data that was not used during the model construction) using area under the curve (AUC) method. The success rate curve showed that the area under the curve for RBF and MLP was 0.9085 (90.85 %) and 0.9193 (91.93 %) accuracy, respectively. Similarly, the validation result showed that the area under the curve for MLP and RBF models were 0.881 (88.1 %) and 0.8724 (87.24 %), respectively. The results of this study showed that landslide susceptibility mapping in the Vaz Watershed of Iran using the ANN approach is viable and can be used for land use planning.

309 citations

Journal ArticleDOI
TL;DR: A novel approach of incorporating PSO algorithm with ANN has been proposed to eliminate the limitation of the BP-ANN and the results indicate that the proposed method is able to predict flyrock distance and PPV induced by blasting with a high degree of accuracy.
Abstract: Blasting is a major component of the construction and mining industries in terms of rock fragmentation and concrete demolition. Blast designers are constantly concerned about flyrock and ground vibration induced by blasting as adverse and unintended effects of explosive usage on the surrounding areas. In recent years, several researches have been done to predict flyrock and ground vibration by means of conventional backpropagation (BP) artificial neural network (ANN). However, the convergence rate of the BP-ANN is relatively slow and solutions can be trapped at local minima. Since particle swarm optimization (PSO) is a robust global search algorithm, it can be used to improve ANNs' performance. In this study, a novel approach of incorporating PSO algorithm with ANN has been proposed to eliminate the limitation of the BP-ANN. This approach was applied to simulate the flyrock distance and peak particle velocity (PPV) induced by blasting. PSO parameters and optimal network architecture were determined using sensitivity analysis and trial and error method, respectively. Finally, a model was selected, and the proposed model was trained and tested using 44 datasets obtained from three granite quarry sites in Malaysia. Each dataset involved ten inputs, including the most influential parameters on flyrock distance and PPV, and two outputs. The results indicate that the proposed method is able to predict flyrock distance and PPV induced by blasting with a high degree of accuracy. Sensitivity analysis was also conducted to determine the influence of each parameter on flyrock distance and PPV. The results show that the powder factor and charge per delay are the most effective parameters on flyrock distance, whereas sub-drilling and charge per delay are the most effective parameters on PPV.

285 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the application of the weights-of-evidence and certainty factor approaches for producing landslide susceptibility maps of a landslide-prone area (Haraz) in Iran.
Abstract: The main goal of this study was to investigate the application of the weights-of-evidence and certainty factor approaches for producing landslide susceptibility maps of a landslide-prone area (Haraz) in Iran For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage The landslide conditioning factors considered for the study area were slope gradient, slope aspect, altitude, lithology, land use, distance from streams, distance from roads, distance from faults, topographic wetness index, stream power index, stream transport index and plan curvature For validation of the produced landslide susceptibility maps, the results of the analyses were compared with the field-verified landslide locations Additionally, the receiver operating characteristic curves for all the landslide susceptibility models were constructed and the areas under the curves were calculated The landslide locations were used to validate results of the landslide susceptibility maps The verification results showed that the weights-of-evidence model (7987%) performed better than certainty factor (7202%) model with a standard error of 00663 and 00756, respectively According to the results of the area under curve evaluation, the map produced by weights-of-evidence exhibits satisfactory properties

264 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023432
20221,753
20212,549
20201,296
2019803
2018792