scispace - formally typeset
Search or ask a question
JournalISSN: 1943-0647

IEEE Photonics Journal 

Institute of Electrical and Electronics Engineers
About: IEEE Photonics Journal is an academic journal published by Institute of Electrical and Electronics Engineers. The journal publishes majorly in the area(s): Laser & Computer science. It has an ISSN identifier of 1943-0647. It is also open access. Over the lifetime, 5666 publications have been published receiving 87604 citations. The journal is also known as: Photonics journal & Photonics journal, IEEE.


Papers
More filters
Journal ArticleDOI
TL;DR: A VLC system based on a white LED for indoor broadband wireless access has been demonstrated, with twice the highest capacity that had been previously obtained by using an optimized discrete multitone modulation technique and adaptive bit- and power-loading algorithms.
Abstract: Light-emitting diodes (LEDs), which will be increasingly used in lighting technology, will also allow for distribution of broadband optical wireless signals. Visible-light communication (VLC) using white LEDs offers several advantages over the RF-based wireless systems, i.e., license-free spectrum, low power consumption, and higher privacy. Mostly, optical wireless can provide much higher data rates. In this paper, we demonstrate a VLC system based on a white LED for indoor broadband wireless access. After investigating the nonlinear effects of the LED and the power amplifier, a data rate of 1 Gb/s has been achieved at the standard illuminance level, by using an optimized discrete multitone modulation technique and adaptive bit- and power-loading algorithms. The bit-error ratio of the received data was $1.5\cdot 10^{-3}$ , which is within the limit of common forward error correction (FEC) coding. These results twice the highest capacity that had been previously obtained.

460 citations

Journal ArticleDOI
TL;DR: In this article, a slot waveguide-based ring resonator with a footprint of only 13 mum times 10 mum, fabricated with optical lithography, was presented for selective label-free sensing of proteins.
Abstract: We present a slot-waveguide-based ring resonator in silicon on insulator (SOI) with a footprint of only 13 mum times 10 mum, fabricated with optical lithography. Experiments show that it has 298 nm/RIU sensitivity and a detection limit of 4.2middot10-5 RIU for changes in the refractive index of the top cladding. We prove for the first time that surface chemistry for selective label-free sensing of proteins can be applied inside a 100 nm-wide slot region and demonstrate that the application of a slot waveguide instead of a normal waveguide increases the sensitivity of an SOI ring resonator with a factor 3.5 for the detection of proteins.

397 citations

Journal ArticleDOI
TL;DR: In this paper, an analytical expression of the average power-coupling coefficient (PCC) based on an exponential autocorrelation function is derived, resulting in no need for heavy numerical computations.
Abstract: In order to realize fast and accurate estimation of intercore crosstalk in bent multicore fibers (MCFs), an analytical expression of the average power-coupling coefficient (PCC) based on an exponential autocorrelation function is, for the first time, derived, resulting in no need for heavy numerical computations. It is revealed that, when the bending radius is large and the correlation length is large, the average PCC is inversely proportional to the correlation length and to the square of the propagation constant difference Δβmn between core m and core n, and when the bending radius is small and the correlation length is large, the average PCC is proportional to the bending radius and is independent of the correlation length. When the correlation length is small, on the other hand, the average PCC is proportional to the correlation length and is independent of the bending radius. For homogeneous MCFs (Δβmn = 0) with small bending radius, the average PCC coincides with the mean crosstalk increase per unit length derived from the coupled-mode theory of Hayashi et al. that is proportional to the bending radius. Average crosstalk values calculated by using the analytical expression derived here are in excellent agreement with those of numerical solutions of coupled-power equations, irrespective of the values of bending radius and correlation length.

343 citations

Journal ArticleDOI
TL;DR: In this article, a bias-free quantum random number generator (QRNG) using photon arrival time selectively, in accordance with the number of photon detection events within a sampling time interval in attenuated light, is presented.
Abstract: We present a high-quality bias-free quantum random number generator (QRNG) using photon arrival time selectively, in accordance with the number of photon detection events within a sampling time interval in attenuated light. It is well shown in both theoretical analysis and experimental verification that this random number production method eliminates both bias and correlation perfectly without more postprocessing and that the random number can clearly pass the standard randomness tests. We fulfill theoretical analysis and experimental verification of the method whose rate can reach up to 45 Mb/s.

339 citations

Journal ArticleDOI
TL;DR: The terahertz metamaterials are artificial composites that acquire their electromagnetic properties from embedded subwavelength metallic structures and can be engineered to take on arbitrary values, including those not appearing in nature.
Abstract: Metamaterials are artificial composites that acquire their electromagnetic properties from embedded subwavelength metallic structures. In theory, the effective electromagnetic properties of metamaterials at any frequency can be engineered to take on arbitrary values, including those not appearing in nature. As a result, this new class of materials can dramatically add a degree of freedom to the control of electromagnetic waves. The emergence of metamaterials fortunately coincides with the intense emerging interest in terahertz radiation (T-rays), for which efficient forms of electromagnetic manipulation are sought. Considering the scarcity of naturally existing materials that can control terahertz, metamaterials become ideal substitutes that promise advances in terahertz research. Ultimately, terahertz metamaterials will lead to scientific and technological advantages in a number of areas. This article covers the principles of metamaterials and reviews the latest trends in terahertz metamaterial research from the fabrication and characterization to the implementation.

308 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023422
2022866
2021498
2020473
2019609
2018585