scispace - formally typeset
Search or ask a question
JournalISSN: 1934-2608

Journal of Nanophotonics 

SPIE
About: Journal of Nanophotonics is an academic journal published by SPIE. The journal publishes majorly in the area(s): Plasmon & Photonic crystal. It has an ISSN identifier of 1934-2608. Over the lifetime, 1223 publications have been published receiving 13795 citations. The journal is also known as: J Nanophotonics & JNP.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present several theoretical approaches to calculate the optical forces exerted on trapped nanoparticles and compare them with the results of a single-beam optical trap, and a close look into the key experiments to date demonstrates the feasibility of trapping and provides a grasp of the enormous possibilities that remain to be explored.
Abstract: Optical trapping is an established field for movement of micron-size objects and cells. However, trapping of metal nanoparticles, nanowires, nanorods and molecules has received little attention. Nanoparticles are more challenging to optically trap and they offer ample new phenomena to explore, for example the plasmon resonance. Resonance and size effects have an impact upon trapping forces that causes nanoparticle trapping to differ from micromanipulation of larger micron-sized objects. There are numerous theoretical approaches to calculate optical forces exerted on trapped nanoparticles. Their combination and comparison gives the reader deeper understanding of the physical processes in an optical trap. A close look into the key experiments to date demonstrates the feasibility of trapping and provides a grasp of the enormous possibilities that remain to be explored. When constructing a single-beam optical trap, particular emphasis has to be placed on the choice of imaging for the trapping and confinement of nanoparticles.

459 citations

Journal ArticleDOI
TL;DR: The broadband optical absorption properties of silicon nanowire (SiNW) films fabricated on glass substrates by wet etching and chemical vapor deposition (CVD) have been measured and found to be higher than solid thin films of equivalent thickness.
Abstract: The broadband optical absorption properties of silicon nanowire (SiNW) films fabricated on glass substrates by wet etching and chemical vapor deposition (CVD) have been measured and found to be higher than solid thin films of equivalent thickness. The observed behavior is adequately explained by light scattering and light trapping though some of the observed absorption is due to a high density of surface states in the nanowires films, as evidenced by the partial reduction in high residual sub-bandgap absorption after hydrogen passivation. Finite difference time domain simulations show strong resonance within and between the nanowires in a vertically oriented array and describe the experimental absorption data well. These structures may be of interest in optical films and optoelectronic device applications.

320 citations

Journal ArticleDOI
TL;DR: In this article, a wide window in the near-infrared (wavelengths 1t o 3μm) where light scattering by lossless submicrometer Ge spherical particles is fully described by their induced electric and magnetic dipoles was found.
Abstract: Thecoherentcombinationofelectricandmagneticresponsesisthebasisoftheelectro- magnetic behavior of new engineered metamaterials. The basic constituents of their meta-atoms usually have metallic character and consequently high absorption losses. Based on standard "Mie" scattering theory, we found that there is a wide window in the near-infrared (wavelengths 1t o 3μm), where light scattering by lossless submicrometer Ge spherical particles is fully described by their induced electric and magnetic dipoles. The interference between electric and magneticdipolarfieldsisshowntoleadtoanisotropicangulardistributionsofscatteredintensity, including zero backward and almost zero forward scattered intensities at specific wavelengths, which until recently was theoretically established only for hypothetically postulated magnetodi- electric spheres. Although the scattering cross section at zero backward or forward scattering is exactly the same, radiation pressure forces are a factor of 3 higher in the zero forward condition.

220 citations

Journal ArticleDOI
TL;DR: In this paper, a wide range of available plasmonic and phononic materials for mid-IR wavelengths, looking in particular at transition metal nitrides, transparent conducting oxides, silicides, doped semiconductors, and even newer plasmmonic materials such as graphene, are reviewed.
Abstract: The field of plasmonics has the potential to enable unique applications in the mid-infrared (IR) wavelength range. However, as is the case regardless of wavelength, the choice of plasmonic material has significant implications for the ultimate utility of any plasmonic device or structure. In this manuscript, we review the wide range of available plasmonic and phononic materials for mid-IR wavelengths, looking in particular at transition metal nitrides, transparent conducting oxides, silicides, doped semiconductors, and even newer plasmonic materials such as graphene. We also include in our survey materials with strong mid-IR phonon resonances, such as GaN, GaP, SiC, and the perovskite SrTiO 3 , all of which can support plasmon-like modes over limited wavelength ranges. We will discuss the suitability of each of these plasmonic and phononic materials, as well as the more traditional noble metals for a range of structures and applications and will discuss the potential and limitations of alternative plasmonic materials at these IR wavelengths.

192 citations

Journal ArticleDOI
TL;DR: In this paper, the strategy for synthesizing fluorescent protein-gold nanoclusters and the characterization methods employed to study these systems are discussed, as well as the promising future for fluorescent protein and gold nanomaterials as long as research continues to uncover fundamental structure-property relation ships.
Abstract: Research is turning toward nanotechnology for solutions to current limitations in bio- medical imaging and analytical detection applications. New to fluorescent nanomaterials that could help advance such applications are protein-stabilized gold nanoclusters. They are potential candidates for imaging agents and sensitive fluorescence sensors because of their biocompat- ibility and intense photoluminescence. This review discusses the strategy for synthesizing fluorescent protein-gold nanoclusters and the characterization methods employed to study these systems. Optical properties and relevant light-emitting applications are reported to present the versatility of protein-gold nanoclusters. These new bio-nano hybrids are an exciting new system that remains to be explored in many aspects, especially regarding the determination of gold nanocluster local structure and the enhancement of quantum yields. Understanding how to finely tune the optical properties will be pivotal for improving fluorescence imaging and other nanocluster applications. There is a promising future for fluorescent protein-gold nanoclusters as long as research continues to uncover fundamental structure-property relation- ships. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). (DOI: 10.1117/1.JNP.6

164 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202357
202291
202114
202072
201967
2018104