scispace - formally typeset
Open AccessJournal ArticleDOI

Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries

TLDR
An overview of cathode and anode materials for sodium-ion batteries, and a comprehensive summary of research on cathodes for magnesium ion batteries are provided in this article. And several common experimental discrepancies in the literature are addressed, noting the additional constraints placed on magnesium electrochemistry.
Abstract
The need for economical and sustainable energy storage drives battery research today. While Li-ion batteries are the most mature technology, scalable electrochemical energy storage applications benefit from reductions in cost and improved safety. Sodium- and magnesium-ion batteries are two technologies that may prove to be viable alternatives. Both metals are cheaper and more abundant than Li, and have better safety characteristics, while divalent magnesium has the added bonus of passing twice as much charge per atom. On the other hand, both are still emerging fields of research with challenges to overcome. For example, electrodes incorporating Na+ are often pulverized under the repeated strain of shuttling the relatively large ion, while insertion and transport of Mg2+ is often kinetically slow, which stems from larger electrostatic forces. This review provides an overview of cathode and anode materials for sodium-ion batteries, and a comprehensive summary of research on cathodes for magnesium-ion batteries. In addition, several common experimental discrepancies in the literature are addressed, noting the additional constraints placed on magnesium electrochemistry. Lastly, promising strategies for future study are highlighted.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Understanding electrochemical potentials of cathode materials in rechargeable batteries

TL;DR: In this article, the material characteristics that determine and influence the electrochemical potentials of electrodes are discussed, in particular the cathode materials that convert electricity and chemical potential through electrochemical intercalation reactions.
Journal ArticleDOI

Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry

TL;DR: The current advances, existing limitations, along with the possible solutions in the pursuit of cathode materials with high voltage, fast kinetics, and long cycling stability are comprehensively covered and evaluated to guide the future design of aqueous ZIBs with a combination of high gravimetric energy density, good reversibility, and a long cycle life.
Journal ArticleDOI

Recycling of lithium-ion batteries: Recent advances and perspectives

TL;DR: A review of recent advances in recycling technologies of spent lithium-ion batteries, including the development of recycling processes, the products obtained from recycling, and the effects of recycling on environmental burdens are also highlighted.
Journal ArticleDOI

Three-Dimensional Architectures Constructed from Transition-Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion.

TL;DR: This Review summarizes the commonly used routes to build 3D TMD architectures and highlights their applications in electrochemical energy storage and conversion, including batteries, supercapacitors, and electrocatalytic hydrogen evolution.
Journal ArticleDOI

Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase

TL;DR: In this paper, a stable ion conducting solid electrolyte interphase (SEI) formed in an ether-based electrolyte was used to improve the performance of HSSAC anodes.
References
More filters
Journal ArticleDOI

Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides

TL;DR: The effective ionic radii of Shannon & Prewitt [Acta Cryst. (1969), B25, 925-945] are revised to include more unusual oxidation states and coordinations as mentioned in this paper.
Journal ArticleDOI

Challenges for Rechargeable Li Batteries

TL;DR: In this paper, the authors reviewed the challenges for further development of Li rechargeable batteries for electric vehicles and proposed a nonflammable electrolyte with either a larger window between its lowest unoccupied molecular orbital and highest occupied molecular orbital (HOMO) or a constituent that can develop rapidly a solid/ electrolyte-interface (SEI) layer to prevent plating of Li on a carbon anode during a fast charge of the battery.
Journal ArticleDOI

The Li-ion rechargeable battery: a perspective.

TL;DR: New strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively.
Journal ArticleDOI

Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries

TL;DR: In this article, the authors showed that a reversible loss in capacity with increasing current density appears to be associated with a diffusion-limited transfer of lithium across the two-phase interface.
Journal ArticleDOI

Challenges in the development of advanced Li-ion batteries: a review

TL;DR: Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution as mentioned in this paper.
Related Papers (5)