scispace - formally typeset
Journal ArticleDOI

Low temperature heat storage with phase change materials

George A. Lane
- 01 Jul 1980 - 
- Vol. 1, Iss: 3, pp 155-168
Reads0
Chats0
TLDR
In this paper, a group of promising phase change heat storage materials was selected through study of the literature, laboratory tests of freeze-melt behavior and determination of thermophysical properties. Means were developed of encapsulating these materials in metal or plastic containers.
Abstract
SYNOPSIS A group of promising phase change heat-storage materials was selected through study of the literature, laboratory tests of freeze—melt behaviour and determination of thermophysical properties. Means were developed of encapsulating these materials in metal or plastic containers. Four of these phase-change materials, suitably encapsulated, were tested in a sub-kale thermal storage unit of about 20MJ capacity, using air as the heat-transfer fluid. In most cases, measured thermal-storage capacity exceeded 90% of the theoretical value. After considering a number of heating and cooling schemes employing phase-change heat storage, we selected a forced hot air, central storage design, using CaCl2.6H2O encapsulated in plastic pipes. A home was designed, using a two-storey conservatory for solar collection with vertical glazing and movable insulation.

read more

Citations
More filters
Journal ArticleDOI

Review on thermal energy storage with phase change: materials, heat transfer analysis and applications

TL;DR: In this paper, a review of the history of thermal energy storage with solid-liquid phase change has been carried out and three aspects have been the focus of this review: materials, heat transfer and applications.
Journal ArticleDOI

A review on phase change energy storage: materials and applications

TL;DR: In this paper, a review of the phase change materials (PCM) and their application in energy storage is presented, where the main advantages of encapsulation are providing large heat transfer area, reduction of the PCMs reactivity towards the outside environment and controlling the changes in volume of the storage materials as phase change occurs.
Journal ArticleDOI

State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization

TL;DR: In this article, the different storage concepts are reviewed and classified, and modellization of such systems is reviewed, and all materials considered in literature or plants are listed. But only a few plants in the world have tested high temperature thermal energy storage systems.
Journal ArticleDOI

Phase change materials for thermal energy storage

TL;DR: In this article, the state of the art of phase change materials for thermal energy storage applications is reviewed and an insight into recent efforts to develop new phase change material with enhanced performance and safety.
Journal ArticleDOI

Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques

TL;DR: In this article, the development of available thermal energy storage (TES) technologies and their individual pros and cons for space and water heating applications are reviewed and compared for low temperature applications, where water is used as a storage medium.
References
Related Papers (5)