scispace - formally typeset
Journal ArticleDOI

Molecular and functional diversity of vascular endothelial growth factors.

Yasuo Yamazaki, +1 more
- 14 Sep 2006 - 
- Vol. 10, Iss: 4, pp 515-527
TLDR
The molecular and functional diversity of VEGF family proteins play multiple physiological roles, such as angiogenesis and lymphangiogenesis, while exogenous members (viral and snake venom VEGFs) display activities that are unique in physiology and function.
Abstract
Members of the vascular endothelial growth factor (VEGF) family are crucial regulators of neovascularization and are classified as cystine knot growth factors that specifically bind cellular receptor tyrosine kinases VEGFR-1, VEGFR-2, and VEGFR-3 with high but variable affinity and selectivity. The VEGF family has recently been expanded and currently comprises seven members: VEGF-A, VEGF-B, placenta growth factor (PlGF), VEGF-C, VEGF-D, viral VEGF (also known as VEGF-E), and snake venom VEGF (also known as VEGF-F). Although all members are structurally homologous, there is molecular diversity among the subtypes, and several isoforms, such as VEGF-A, VEGF-B, and PlGF, are generated by alternative exon splicing. These splicing isoforms exhibit differing properties, particularly in binding to co-receptor neuropilins and heparin. VEGF family proteins play multiple physiological roles, such as angiogenesis and lymphangiogenesis, while exogenous members (viral and snake venom VEGFs) display activities that are unique in physiology and function. This review will highlight the molecular and functional diversity of VEGF family proteins.

read more

Citations
More filters
Journal ArticleDOI

Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition.

TL;DR: Improvements have been made in delineating the VEGFR-2 specific intracellular signalling cascades leading to proliferation, migration, survival and increased permeability, each of which contributes to the angiogenic response.
Journal Article

Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis.

TL;DR: This article aims to highlight the most recent data referring to the VEGF family and its receptors, as well as its implications in the angiogenesis process.
Journal ArticleDOI

Mesenchymal Stem Cell Migration and Tissue Repair.

TL;DR: The effects of several main regulatory factors on BMSC migration and its underlying mechanism are reviewed; two critical roles of BMSCs—namely, directed differentiation and the paracrine function—in tissue repair are discussed; and insight is provided into the relationship between B MSCs migration and tissue repair.
Journal ArticleDOI

VEGF: an Essential Mediator of Both Angiogenesis and Endochondral Ossification:

TL;DR: Current findings on endochondral ossification are discussed, with emphasis on VEGF-A action in osteoblasts,chondroblasts, and chondroclasts/osteoclasts and regulatory mechanisms involving oxygen tension, and some growth factors and hormones.
References
More filters
Journal ArticleDOI

Isolation of putative progenitor endothelial cells for angiogenesis.

TL;DR: It is suggested that EC progenitors may be useful for augmenting collateral vessel growth to ischemic tissues (therapeutic angiogenesis) and for delivering anti- or pro-angiogenic agents, respectively, to sites of pathologic or utilitarianAngiogenesis.
Journal ArticleDOI

Angiogenesis in cancer, vascular, rheumatoid and other disease

TL;DR: Think of the switch to the angiogenic phenotype as a net balance of positive and negative regulators of blood vessel growth, which may dictate whether a primary tumour grows rapidly or slowly and whether metastases grow at all.
Journal ArticleDOI

Mechanisms of angiogenesis

TL;DR: Understanding of the molecular basis underlying angiogenesis, particularly from the study of mice lacking some of the signalling systems involved, has greatly improved, and may suggest new approaches for treating conditions such as cancer that depend onAngiogenesis.
Journal ArticleDOI

Targeting of HIF-alpha to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation

TL;DR: It is shown that the interaction between human pVHL and a specific domain of the HIF-1α subunit is regulated through hydroxylation of a proline residue by an enzyme the authors have termed Hif-α prolyl-hydroxylase (HIF-PH).
Journal ArticleDOI

Vascular endothelial growth factor is a secreted angiogenic mitogen

TL;DR: DNA sequencing suggests the existence of several molecular species of VEGF, a heparin-binding growth factor specific for vascular endothelial cells that is able to induce angiogenesis in vivo.
Related Papers (5)