scispace - formally typeset
Open AccessJournal ArticleDOI

Senescence‐associated β‐galactosidase is lysosomal β‐galactosidase

Reads0
Chats0
TLDR
It is demonstrated here that SA‐β‐gal activity is expressed from GLB1, the gene encoding lysosomal β‐D‐galactosidase, the activity of which is typically measured at acidic pH 4.5.
Abstract
Replicative senescence limits the proliferation of somatic cells passaged in culture and may reflect cellular aging in vivo. The most widely used biomarker for senescent and aging cells is senescence-associated beta-galactosidase (SA-beta-gal), which is defined as beta-galactosidase activity detectable at pH 6.0 in senescent cells, but the origin of SA-beta-gal and its cellular roles in senescence are not known. We demonstrate here that SA-beta-gal activity is expressed from GLB1, the gene encoding lysosomal beta-D-galactosidase, the activity of which is typically measured at acidic pH 4.5. Fibroblasts from patients with autosomal recessive G(M1)-gangliosidosis, which have defective lysosomal beta-galactosidase, did not express SA-beta-gal at late passages even though they underwent replicative senescence. In addition, late passage normal fibroblasts expressing small-hairpin interfering RNA that depleted GLB1 mRNA underwent senescence but failed to express SA-beta-gal. GLB1 mRNA depletion also prevented expression of SA-beta-gal activity in HeLa cervical carcinoma cells induced to enter a senescent state by repression of their endogenous human papillomavirus E7 oncogene. SA-beta-gal induction during senescence was due at least in part to increased expression of the lysosomal beta-galactosidase protein. These results also indicate that SA-beta-gal is not required for senescence.

read more

Citations
More filters
Journal ArticleDOI

Cellular senescence: when bad things happen to good cells

TL;DR: Understanding the causes and consequences of cellular senescence has provided novel insights into how cells react to stress, especially genotoxic stress, and how this cellular response can affect complex organismal processes such as the development of cancer and ageing.
Journal ArticleDOI

The essence of senescence

TL;DR: The various features of cellular senescence are reviewed and their contribution to tumor suppression is discussed and the power and limitations of the biomarkers currently used to identify senescent cells in vitro and in vivo are highlighted.
Journal ArticleDOI

Four faces of cellular senescence

TL;DR: The challenge now is to understand the senescence response well enough to harness its benefits while suppressing its drawbacks.
Journal ArticleDOI

Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo.

TL;DR: A cytochemical protocol suitable for the histochemical detection of individual senescent cells both in culture and tissue biopsies is described and the fluorescence-based methods have the advantages of being more quantitative and sensitive.
Journal ArticleDOI

Hallmarks of Cellular Senescence.

TL;DR: The molecular regulators of senescence phenotypes and how they are used for identifying senescent cells in vitro and in vivo are described and the importance that these levels of regulations have in the development of therapeutic targets is highlighted.
References
More filters
Journal ArticleDOI

The serial cultivation of human diploid cell strains.

TL;DR: A consideration of the cause of the eventual degeneration of these strains leads to the hypothesis that non-cumulative external factors are excluded and that the phenomenon is attributable to intrinsic factors which are expressed as senescence at the cellular level.
Journal ArticleDOI

A biomarker that identifies senescent human cells in culture and in aging skin in vivo

TL;DR: It is shown that several human cells express a beta-galactosidase, histochemically detectable at pH 6, upon senescence in culture, which provides in situ evidence that senescent cells may exist and accumulate with age in vivo.
Journal ArticleDOI

Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a

TL;DR: It is shown that expression of oncogenic ras in primary human or rodent cells results in a permanent G1 arrest, and that the onset of cellular senescence does not simply reflect the accumulation of cell divisions, but can be prematurely activated in response to an onCogenic stimulus.
Journal ArticleDOI

Senescent Cells, Tumor Suppression, and Organismal Aging: Good Citizens, Bad Neighbors

TL;DR: The senescence response may be antagonistically pleiotropic, promoting early-life survival by curtailing the development of cancer but eventually limiting longevity as dysfunctional senescent cells accumulate.
Journal ArticleDOI

BRAFE600-associated senescence-like cell cycle arrest of human naevi

TL;DR: It is shown that sustained BRAFV600E expression in human melanocytes induces cell cycle arrest, which is accompanied by the induction of both p16INK4a and senescence-associated acidic β-galactosidase (SA-β-Gal) activity, a commonly usedsenescence marker.
Related Papers (5)