scispace - formally typeset
Open AccessJournal ArticleDOI

The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice

TLDR
A translational medicine pipeline is described where human gut microbial communities and diets are re-created in gnotobiotic mice and the impact on microbe and host is defined using metagenomics, creating a well-defined, representative animal model of the human gut ecosystem.
Abstract
Diet and nutritional status are among the most important modifiable determinants of human health. The nutritional value of food is influenced in part by a person's gut microbial community (microbiota) and its component genes (microbiome). Unraveling the interrelations among diet, the structure and operations of the gut microbiota, and nutrient and energy harvest is confounded by variations in human environmental exposures, microbial ecology, and genotype. To help overcome these problems, we created a well-defined, representative animal model of the human gut ecosystem by transplanting fresh or frozen adult human fecal microbial communities into germ-free C57BL/6J mice. Culture-independent metagenomic analysis of the temporal, spatial, and intergenerational patterns of bacterial colonization showed that these humanized mice were stably and heritably colonized and reproduced much of the bacterial diversity of the donor's microbiota. Switching from a low-fat, plant polysaccharide-rich diet to a high-fat, high-sugar "Western" diet shifted the structure of the microbiota within a single day, changed the representation of metabolic pathways in the microbiome, and altered microbiome gene expression. Reciprocal transplants involving various combinations of donor and recipient diets revealed that colonization history influences the initial structure of the microbial community but that these effects can be rapidly altered by diet. Humanized mice fed the Western diet have increased adiposity; this trait is transmissible via microbiota transplantation. Humanized gnotobiotic mice will be useful for conducting proof-of-principle "clinical trials" that test the effects of environmental and genetic factors on the gut microbiota and host physiology. Nearly full-length 16S rRNA gene sequences are deposited in GenBank under the accession numbers GQ491120 to GQ493997.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Metagenomic biomarker discovery and explanation

TL;DR: A new method for metagenomic biomarker discovery is described and validates by way of class comparison, tests of biological consistency and effect size estimation to address the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities.
Journal ArticleDOI

Diet rapidly and reproducibly alters the human gut microbiome

TL;DR: Increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease.
Journal ArticleDOI

Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa

TL;DR: In this paper, the authors compared the fecal microbiota of European children (EU) and that of children from a rural African village of Burkina Faso (BF), where the diet, high in fiber content, is similar to that of early human settlements at the time of the birth of agriculture.
Journal ArticleDOI

Functional interactions between the gut microbiota and host metabolism

TL;DR: Through increased knowledge of the mechanisms involved in the interactions between the microbiota and its host, the world will be in a better position to develop treatments for metabolic disease.
References
More filters
Journal ArticleDOI

An obesity-associated gut microbiome with increased capacity for energy harvest

TL;DR: It is demonstrated through metagenomic and biochemical analyses that changes in the relative abundance of the Bacteroidetes and Firmicutes affect the metabolic potential of the mouse gut microbiota and indicates that the obese microbiome has an increased capacity to harvest energy from the diet.
Journal ArticleDOI

A core gut microbiome in obese and lean twins

TL;DR: The faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers are characterized to address how host genotype, environmental exposure and host adiposity influence the gut microbiome.
Journal ArticleDOI

UniFrac: a New Phylogenetic Method for Comparing Microbial Communities

TL;DR: The results illustrate that UniFrac provides a new way of characterizing microbial communities, using the wealth of environmental rRNA sequences, and allows quantitative insight into the factors that underlie the distribution of lineages among environments.
Journal ArticleDOI

The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics

TL;DR: The Carbohydrate-Active Enzyme (CAZy) database is a knowledge-based resource specialized in the enzymes that build and breakdown complex carbohydrates and glycoconjugates and has been used to improve the quality of functional predictions of a number genome projects by providing expert annotation.
Related Papers (5)