scispace - formally typeset
A

Anupam Sharma

Researcher at Panjab University, Chandigarh

Publications -  263
Citations -  17922

Anupam Sharma is an academic researcher from Panjab University, Chandigarh. The author has contributed to research in topics: Large Hadron Collider & Higgs boson. The author has an hindex of 58, co-authored 254 publications receiving 13346 citations.

Papers
More filters
Journal ArticleDOI

GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M O

B. P. Abbott, +1274 more
TL;DR: In 2019, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9 and the Virgo detector was also taking data that did not contribute to detection due to a low SINR but were used for subsequent parameter estimation as discussed by the authors.
Journal ArticleDOI

GW190814: Gravitational Waves from the Coalescence of a 23 M$_\odot$ Black Hole with a 2.6 M$_\odot$ Compact Object

R. Abbott, +1254 more
TL;DR: In this article, the authors reported the observation of a compact binary coalescence involving a 22.2 -24.3 magnitude black hole and a compact object with a mass of 2.50 -2.67 magnitude.
Journal ArticleDOI

GW190521: A Binary Black Hole Merger with a Total Mass of 150 M

R. Abbott, +1335 more
TL;DR: It is inferred that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M⊙, which can be considered an intermediate mass black hole (IMBH).
Journal ArticleDOI

GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run

Richard J. Abbott, +1351 more
TL;DR: In this article, the authors present 39 candidate gravitational wave events from compact binary coalescences detected by Advanced LIGO and Advanced Virgo in the first half of the third observing run (O3a) between 1 April 2019 15:00 UTC and 1 October 2019 15.00.
Journal ArticleDOI

Particle-flow reconstruction and global event description with the CMS detector

Albert M. Sirunyan, +2215 more
TL;DR: A fully-fledged particle-flow reconstruction algorithm tuned to the CMS detector was developed and has been consistently used in physics analyses for the first time at a hadron collider as mentioned in this paper.