scispace - formally typeset
M

Melody A. Swartz

Researcher at Johns Hopkins University

Publications -  1310
Citations -  115247

Melody A. Swartz is an academic researcher from Johns Hopkins University. The author has contributed to research in topics: Large Hadron Collider & Standard Model. The author has an hindex of 148, co-authored 1304 publications receiving 103753 citations. Previous affiliations of Melody A. Swartz include University of Kansas & University of Pavia.

Papers
More filters
Journal ArticleDOI

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

S. Chatrchyan, +2863 more
- 17 Sep 2012 - 
TL;DR: In this paper, results from searches for the standard model Higgs boson in proton-proton collisions at 7 and 8 TeV in the CMS experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.8 standard deviations.
Journal ArticleDOI

Capturing complex 3D tissue physiology in vitro.

TL;DR: Some of the 'design principles' for recreating the interwoven set of biochemical and mechanical cues in the cellular microenvironment are discussed, and the methods for implementing them are discussed.
Journal ArticleDOI

Combined Measurement of the Higgs Boson Mass in pp Collisions at √s=7 and 8 TeV with the ATLAS and CMS Experiments

Georges Aad, +5120 more
TL;DR: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels.
Journal ArticleDOI

Hyperplasia of lymphatic vessels in VEGF-C transgenic mice

TL;DR: VEGF-C induces selective hyperplasia of the lymphatic vasculature, which is involved in the draining of interstitial fluid and in immune function, inflammation, and tumor metastasis, and may be of potential use in therapeutic lymphangiogenesis.
Journal ArticleDOI

Exploiting lymphatic transport and complement activation in nanoparticle vaccines.

TL;DR: In this article, the authors investigate whether nanoparticles can be used as a vaccine platform by targeting lymph node-residing dendritic cells via interstitial flow and activating these cells by in situ complement activation.