scispace - formally typeset
R

Ralph J. DeBerardinis

Researcher at University of Texas Southwestern Medical Center

Publications -  325
Citations -  55892

Ralph J. DeBerardinis is an academic researcher from University of Texas Southwestern Medical Center. The author has contributed to research in topics: Cancer & Medicine. The author has an hindex of 88, co-authored 271 publications receiving 42314 citations. Previous affiliations of Ralph J. DeBerardinis include University of Texas at Dallas & Children's Medical Research Institute.

Papers
More filters
Journal ArticleDOI

The biology of cancer: metabolic reprogramming fuels cell growth and proliferation

TL;DR: This review examines the idea that several core fluxes, including aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis, form a stereotyped platform supporting proliferation of diverse cell types and regulates regulation of these fluxes by cellular mediators of signal transduction and gene expression.
Journal ArticleDOI

Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

Lorenzo Galluzzi, +186 more
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Journal ArticleDOI

Beyond aerobic glycolysis : Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis

TL;DR: Transformed cells exhibit a high rate of glutamine consumption that cannot be explained by the nitrogen demand imposed by nucleotide synthesis or maintenance of nonessential amino acid pools, and glutamine metabolism provides a carbon source that facilitates the cell's ability to use glucose-derived carbon and TCA cycle intermediates as biosynthetic precursors.
Journal ArticleDOI

Fundamentals of cancer metabolism

TL;DR: A conceptual framework to understand how and why metabolic reprogramming occurs in tumor cells, and the mechanisms linking altered metabolism to tumorigenesis and metastasis will progressively support the development of new strategies to treat human cancer.
Journal ArticleDOI

Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction

TL;DR: It is reported that the transcriptional regulatory properties of the oncogene Myc coordinate the expression of genes necessary for cells to engage in glutamine catabolism that exceeds the cellular requirement for protein and nucleotide biosynthesis, resulting in the reprogramming of mitochondrial metabolism to depend on glutaminolysis to sustain cellular viability and TCA cycle anapleurosis.