scispace - formally typeset
Search or ask a question
JournalISSN: 1570-761X

Bulletin of Earthquake Engineering 

Springer Science+Business Media
About: Bulletin of Earthquake Engineering is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Masonry & Engineering. It has an ISSN identifier of 1570-761X. Over the lifetime, 2638 publications have been published receiving 58288 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors developed both vulnerability and capacity curves with reference to an assumed typological classification system; moreover, their cross-validation is presented in the paper and the parameters of the two methods and the steps for their operative implementation are provided.
Abstract: The European Commission funded the RISK-UE project in 1999 with the aim of providing an advanced approach to earthquake risk scenarios for European towns and regions. In the framework of Risk-UE project, two methods were proposed, originally derived and calibrated by the authors, for the vulnerability assessment of current buildings and for the evaluation of earthquake risk scenarios: a macroseismic model, to be used with macroseismic intensity hazard maps, and a mechanical based model, to be applied when the hazard is provided in terms of peak ground accelerations and spectral values. The vulnerability of the buildings is defined by vulnerability curves, within the macroseismic method, and in terms of capacity curves, within the mechanical method. In this paper, the development of both vulnerability and capacity curves is presented with reference to an assumed typological classification system; moreover, their cross-validation is presented. The parameters of the two methods and the steps for their operative implementation are provided in the paper.

615 citations

Journal ArticleDOI
TL;DR: It is shown how REXEL can effectively be a contribution to code-based real records selection for seismic structural analysis.
Abstract: In code-based seismic design and assessment it is often allowed the use of real records as an input for nonlinear dynamic analysis. On the other hand, international seismic guidelines, concerning this issue, have been found hardly applicable by practitioners. This is related to both the difficulty in rationally relating the ground motions to the hazard at the site and the required selection criteria, which do not favor the use of real records, but rather various types of spectrum matching signals. To overcome some of these obstacles a software tool for code-based real records selection was developed. REXEL, freely available at the website of the Italian network of earthquake engineering university labs (http://www.reluis.it/index_eng.html), allows to search for suites of waveforms, currently from the European Strong-motion Database, compatible to reference spectra being either user-defined or automatically generated according to Eurocode 8 and the recently released new Italian seismic code. The selection reflects the provisions of the considered codes and others found to be important by recent research on the topic. In the paper, record selection criteria are briefly reviewed first, and then the algorithms implemented in the software are discussed. Finally, via some examples, it is shown how REXEL can effectively be a contribution to code-based real records selection for seismic structural analysis.

554 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented equations for the estimation of horizontal strong ground motions caused by shallow crustal earthquakes with magnitudes Mw ≥ 5 and distance to the surface projection of the fault less than 100km.
Abstract: This article presents equations for the estimation of horizontal strong ground motions caused by shallow crustal earthquakes with magnitudes Mw ≥ 5 and distance to the surface projection of the fault less than 100km. These equations were derived by weighted regression analysis, used to remove observed magnitude-dependent variance, on a set of 595 strong-motion records recorded in Europe and the Middle East. Coefficients are included to model the effect of local site effects and faulting mechanism on the observed ground motions. The equations include coefficients to model the observed magnitude-dependent decay rate. The main findings of this study are that: short-period ground motions from small and moderate magnitude earthquakes decay faster than the commonly assumed 1/r, the average effect of differing faulting mechanisms is not large and corresponds to factors between 0.8 (normal and odd) and 1.3 (thrust) with respect to strike-slip motions and that the average long-period amplification caused by soft soil deposits is about 2.6 over those on rock sites. Disappointingly the standard deviations associated with the derived equations are not significantly lower than those found in previous studies.

533 citations

Journal ArticleDOI
TL;DR: The 2013 European Seismic Hazard Model (ESHM13) as discussed by the authors is a consistent seismic hazard model for Europe and Turkey which overcomes the limitation of national borders and includes a through quantification of the uncertainties.
Abstract: The 2013 European Seismic Hazard Model (ESHM13) results from a community-based probabilistic seismic hazard assessment supported by the EU-FP7 project “Seismic Hazard Harmonization in Europe” (SHARE, 2009–2013). The ESHM13 is a consistent seismic hazard model for Europe and Turkey which overcomes the limitation of national borders and includes a through quantification of the uncertainties. It is the first completed regional effort contributing to the “Global Earthquake Model” initiative. It might serve as a reference model for various applications, from earthquake preparedness to earthquake risk mitigation strategies, including the update of the European seismic regulations for building design (Eurocode 8), and thus it is useful for future safety assessment and improvement of private and public buildings. Although its results constitute a reference for Europe, they do not replace the existing national design regulations that are in place for seismic design and construction of buildings. The ESHM13 represents a significant improvement compared to previous efforts as it is based on (1) the compilation of updated and harmonised versions of the databases required for probabilistic seismic hazard assessment, (2) the adoption of standard procedures and robust methods, especially for expert elicitation and consensus building among hundreds of European experts, (3) the multi-disciplinary input from all branches of earthquake science and engineering, (4) the direct involvement of the CEN/TC250/SC8 committee in defining output specifications relevant for Eurocode 8 and (5) the accounting for epistemic uncertainties of model components and hazard results. Furthermore, enormous effort was devoted to transparently document and ensure open availability of all data, results and methods through the European Facility for Earthquake Hazard and Risk ( www.efehr.org ).

399 citations

Journal ArticleDOI
TL;DR: This paper presented the latest generation of ground motion models for the prediction of elastic response (pseudo-) spectral accelerations, as well as peak ground acceleration and velocity, derived using pan-European databases.
Abstract: This article presents the latest generation of ground-motion models for the prediction of elastic response (pseudo-) spectral accelerations, as well as peak ground acceleration and velocity, derived using pan-European databases. The models present a number of novelties with respect to previous generations of models (Ambraseys et al. in Earthq Eng Struct Dyn 25:371–400, 1996, Bull Earthq Eng 3:1–53, 2005; Bommer et al. in Bull Earthq Eng 1:171–203, 2003; Akkar and Bommer in Seismol Res Lett 81:195–206, 2010), namely: inclusion of a nonlinear site amplification function that is a function of $$\text{ V }_\mathrm{S30}$$ and reference peak ground acceleration on rock; extension of the magnitude range of applicability of the model down to $$\text{ M }_\mathrm{w}$$ 4; extension of the distance range of applicability out to 200 km; extension to shorter and longer periods (down to 0.01 s and up to 4 s); and consistent models for both point-source (epicentral, $$\text{ R }_\mathrm{epi}$$ , and hypocentral distance, $$\text{ R }_\mathrm{hyp}$$ ) and finite-fault (distance to the surface projection of the rupture, $$\text{ R }_\mathrm{JB}$$ ) distance metrics. In addition, data from more than 1.5 times as many earthquakes, compared to previous pan-European models, have been used, leading to regressions based on approximately twice as many records in total. The metadata of these records have been carefully compiled and reappraised in recent European projects. These improvements lead to more robust ground-motion prediction equations than have previously been published for shallow (focal depths less than 30 km) crustal earthquakes in Europe and the Middle East. We conclude with suggestions for the application of the equations to seismic hazard assessments in Europe and the Middle East within a logic-tree framework to capture epistemic uncertainty.

382 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023143
2022310
2021294
2020254
2019255
2018235