scispace - formally typeset
Search or ask a question
JournalISSN: 1541-4337

Comprehensive Reviews in Food Science and Food Safety 

Wiley-Blackwell
About: Comprehensive Reviews in Food Science and Food Safety is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Medicine & Chemistry. It has an ISSN identifier of 1541-4337. Over the lifetime, 1298 publications have been published receiving 107491 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors studied the role of chlorophyll as a photosensitizer for the formation of 1O2; however, carotenoids and tocopherols decrease the oxidation through 1O 2 quenching.
Abstract: : Edible oil is oxidized during processing and storage via autoxidation and photosensitized oxidation, in which triplet oxygen (3O2) and singlet oxygen (1O2) react with the oil, respectively. Autoxidation of oils requires radical forms of acylglycerols, whereas photosensitized oxidation does not require lipid radicals since 1O2 reacts directly with double bonds. Lipid hydroperoxides formed by 3O2 are conjugated dienes, whereas 1O2 produces both conjugated and nonconjugated dienes. The hydroperoxides are decomposed to produce off-flavor compounds and the oil quality decreases. Autoxidation of oil is accelerated by the presence of free fatty acids, mono- and diacylglycerols, metals such as iron, and thermally oxidized compounds. Chlorophylls and phenolic compounds decrease the autoxidation of oil in the dark, and carotenoids, tocopherols, and phospholipids demonstrate both antioxidant and prooxidant activity depending on the oil system. In photosensitized oxidation chlorophyll acts as a photosensitizer for the formation of 1O2; however, carotenoids and tocopherols decrease the oxidation through 1O2 quenching. Temperature, light, oxygen concentration, oil processing, and fatty acid composition also affect the oxidative stability of edible oil.

1,435 citations

Journal ArticleDOI
TL;DR: The concept of resistant starch has evoked new interest in the bioavailability of starch and in its use as a source of dietary fiber, particularly in adults, and is now considered to provide functional properties and find applications in a variety of foods.
Abstract: The concept of resistant starch (RS) has evoked new interest in the bioavailability of starch and in its use as a source of dietary fiber, particularly in adults. RS is now considered to provide functional properties and find applications in a variety of foods. Types of RS, factors influencing their formation, consequence of such formation, their methods of preparation, their methods of estimation, and health benefits have been briefly discussed in this review.

1,432 citations

Journal ArticleDOI
TL;DR: An overview of natural antioxidants, their mechanisms of action, and potential applications can be found in this article, where the authors provide an overview of the potential applications of these natural antioxidants.
Abstract: While use of synthetic antioxidants (such as butylated hydroxytoluene and butylated hydroxyanisole) to maintain the quality of ready-to-eat food products has become commonplace, consumer concern regarding their safety has motivated the food industry to seek natural alternatives. Phenolic antioxidants can inhibit free radical formation and/or interrupt propagation of autoxidation. Fat-soluble vitamin E (α-tocopherol) and water-soluble vitamin C (L-ascorbic acid) are both effective in the appropriate matrix. Plant extracts, generally used for their flavoring characteristics, often have strong H-donating activity thus making them extremely effective antioxidants. This antioxidant activity is most often due to phenolic acids (gallic, protocatechuic, caffeic, and rosmarinic acids), phenolic diterpenes (carnosol, carnosic acid, rosmanol, and rosmadial), flavonoids (quercetin, catechin, naringenin, and kaempferol), and volatile oils (eugenol, carvacrol, thymol, and menthol). Some plant pigments (anthocyanin and anthocyanidin) can chelate metals and donate H to oxygen radicals thus slowing oxidation via 2 mechanisms. Tea and extracts of grape seeds and skins contain catechins, epicatechins, phenolic acids, proanthocyanidins, and resveratrol, all of which contribute to their antioxidative activity. The objective of this article is to provide an overview of natural antioxidants, their mechanisms of action, and potential applications.

1,393 citations

Journal ArticleDOI
TL;DR: The linkage of a 100% bio-originated material and nanomaterials opens new windows for becoming independent, primarily, of petrochemical-based polymers and, secondarily, for answering environmental and health concerns will undoubtedly be growing with time.
Abstract: Environmental, economic, and safety challenges have provoked packaging scientists and producers to partially substitute petrochemical-based polymers with biodegradable ones. The general purpose of this review is to introduce poly-lactic acid (PLA), a compostable, biodegradable thermoplastic made from renewable sources. PLA properties and modifications via different methods, like using modifiers, blending, copolymerizing, and physical treatments, are mentioned; these are rarely discussed together in other reviews. Industrial processing methods for producing different PLA films, wrappings, laminates, containers (bottles and cups), are presented. The capabilities of PLA for being a strong active packaging material in different areas requiring antimicrobial and antioxidant characteristics are discussed. Consequently, applications of nanomaterials in combination with PLA structures for creating new PLA nanocomposites with greater abilities are also covered. These approaches may modify PLA weaknesses for some food packaging applications. Nanotechnology approaches are being broadened in food science, especially in packaging material science with high performances and low concentrations and prices, so this category of nano-research is estimated to be revolutionary in food packaging science in the near future. The linkage of a 100% bio-originated material and nanomaterials opens new windows for becoming independent, primarily, of petrochemical-based polymers and, secondarily, for answering environmental and health concerns will undoubtedly be growing with time.

1,165 citations

Journal ArticleDOI
TL;DR: A comprehensive review of starch retrogadation including the definition of the process, molecular mechanisms of how it occurs, and measurement methods and factors that influence starch retrogradation is provided in this paper.
Abstract: Starch retrogradation is a process in which disaggregated amylose and amylopectin chains in a gelatinized starch paste reassociate to form more ordered structures. Starch retrogradation has been the subject of intensive research over the last 50 years, mainly due to its detrimental effect on the sensory and storage qualities of many starchy foods. However, starch retrogadation is desirable for some starchy food products in terms of textural and nutritional properties. To better understand the effect of starch retrogradation on the quality of starchy foods, measurement methods of starch retrogradation and factors that influence starch retrogradation have been studied extensively. This article provides a comprehensive review of starch retrogradation including the definition of the process, molecular mechanisms of how it occurs, and measurement methods and factors that influence starch retrogradation. The review also discusses the effect of retrogradation on the in vitro enzyme digestibility of starch. Spectroscopic methods such as FTIR and Raman are considered to be very promising in characterizing starch retrogradation at a molecular level, although more studies are needed in the future.

990 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023110
2022209
2021206
2020136
201999
201882