scispace - formally typeset
Search or ask a question
JournalISSN: 0931-2250

Journal of Agronomy and Crop Science 

Wiley
About: Journal of Agronomy and Crop Science is an academic journal published by Wiley. The journal publishes majorly in the area(s): Sowing & Drought tolerance. It has an ISSN identifier of 0931-2250. Over the lifetime, 2498 publications have been published receiving 63316 citations. The journal is also known as: Zeitschrift für Acker- und Pflanzenbau (1986) & Journal of agronomy and crop science (1986. Print).


Papers
More filters
Journal ArticleDOI
TL;DR: Thirty diverse genotypes of bread wheat were evaluated for seed vigour index, germination percentage, root length, shoot length, root-to-shoot length ratio, coleoptile length and osmotic membrane stability under laboratory conditions, indicating suppression of variability under moisture stress conditions.
Abstract: Thirty diverse genotypes of bread wheat were evaluated for seed vigour index, germination percentage, root length, shoot length, root-to-shoot length ratio, coleoptile length and osmotic membrane stability under laboratory conditions. Considerable variation was observed for all the characters. Discrimination among the genotypes on the basis of mean values was better under normal than under moisture stress conditions, indicating suppression of variability under moisture stress conditions. Comparison of mean performance under normal and osmotic stress conditions indicated that the seed vigour index was the most sensitive trait, followed by shoot length, germination percentage and root length. The root-to-shoot length ratio, however, increased under osmotic stress. The magnitude of genetic components of variance and heritability were, in general, lower under osmotic stress than under normal conditions. All the characters except germination percentage, shoot length and coleoptile length showed considerable genetic variability. Heritability in the broad sense was also moderate to high for all the characters under both environments. Due to high heritability and genetic advance great benefit from selection can be expected for the osmotic membrane stability of leaf segments and root-to-shoot length ratio. Moderate progress can be expected from root length and seed vigour index. Correlation studies indicated that the osmotic membrane stability of the leaf segment was the most important trait, followed by root-to-shoot ratio and root length on the basis of their relationships with other traits.

447 citations

Journal ArticleDOI
TL;DR: It can be concluded that tolerance of the genotype to moisture and/or temperature stress is closely associated with its antioxidant enzyme system.
Abstract: An experiment was conducted with three wheat genotypes differing in their sensitivity to moisture and/or temperature stress to study the relationship of the chloroplast antioxidant system to stress tolerance. Both moisture stress and temperature stress increased glutathione reductase and peroxidase and decreased membrane stab-iltty, chlorophyll content and chlorophyll stability index in all genotypes. Under moisture stress. DL 153–2 showed the highest membrane stabihty index, chlorophyll content, chlorophyll stability index, glutathione reductase activity and peroxidase activity. However, under elevated temperature conditions, HD 2285, and to a lesser extent DL 153–2, showed higher membrane stability, chlorophyll content and chlorophyll stability index and activities of glutathione reductase and peroxi-dase. Raj 3077, which is sensitive to both drought and temperature stress, showed the lowest membrane stability, chlorophyll content and chlorophyll stability index and glutathione reductase and perosidase activity under elevated temperature as well as drought conditions. Thus, it can be concluded that tolerance of the genotype to moisture and/or temperature stress is closely associated with its antioxidant enzyme system.

374 citations

Journal ArticleDOI
TL;DR: This paper investigated the independent and combined effects of high temperature and drought stress during grain filling on physiological, vegetative and yield traits and expression of a chloroplast protein synthesis elongation factor (EF-Tu) of wheat.
Abstract: High temperature and drought stress are among the two most important environmental factors influencing crop growth, development and yield processes. These two stresses commonly occur in combination. Objectives of this research were to investigate the independent and combined effects of high temperature and drought stress during grain filling on physiological, vegetative and yield traits and expression of a chloroplast protein synthesis elongation factor (EF-Tu) of wheat (Triticum aestivum L.). Two spring wheat cultivars (Pavon-76 and Seri-82) were grown at control temperatures (CT; day/night, 24/14 � C; 16/ 8 h photo/dark period) from sowing to heading. Thereafter, one half of the plants were exposed to high temperature stress (HT; 31/18 � C in Exp. 1 and 34/ 22 � C in Exp. 2), drought stress (withholding water), or a combination of both HT and drought stress. There were significant influences of HT and/or drought stress on physiological, growth and yield traits. There was no cultivar or cultivar by temperature or cultivar by drought interaction effects on most traits. The decreases in leaf photosynthesis were greater at HT compared with drought alone throughout the stress period, and the combination of HT and drought had the lowest leaf photosynthetic rates. Overall, HT or drought had similar effects (about 48‐56 % decrease) on spikelet fertility, grain numbers and grain yield. High temperature decreased grain numbers (by 56 % averaged across both experiments) and individual grain weight (by 25 %), while, respective decreases due to drought were 48 % and 35 %. This suggests that the grain numbers were more sensitive to HT and grain weights to drought for the range of temperatures tested in this research. The interaction between HT and drought stress was significant for total dry weights, harvest index and spikelet fertility, particularly when HT stress was severe (34/22 � C). The combined effects of HT and drought were greater than additive effects of HT or drought alone for leaf chlorophyll content, grain numbers and harvest index. High temperature stress and the combination of HT and drought stress but not drought stress alone resulted in the overexpression of EF-Tu in both spring wheat cultivars.

366 citations

Journal ArticleDOI
TL;DR: Exogenous application of brassinolide remarkably improved the gas exchange attributes, plant height, leaf area, cobs per plant, seedling dry weight both under drought and well-watered conditions.
Abstract: Brassinolides (BRs) are naturally occurring substances, which modulate plant growth and development events and have been known to improve the crop tolerance to abiotic stresses. In this study, possible role of exogenously applied brassinolide (BR) in alleviating the detrimental effects of drought in maize was evaluated in a rain-protected wire-house. Maize was subjected to drought at the start of tasseling for 6 days by withholding water application followed by foliar spray of BR (0.1 mg l−1) to assess the changes in growth, gas exchange, chlorophyll contents, protein, relative leaf water contents (RLWC), proline, malonialdehyde (MDA) and enzymatic antioxidants. Drought substantially reduced the maize growth in terms of plant height, leaf area and plant biomass. Moreover, substantial decrease in gas exchange attributes (net photosynthetic rate (A), transpiration rate (E), stomatal conductance (gs), water use efficiency (WUE), instantaneous water use efficiency (WUEi) and intercellular CO2 (Ci) was also recorded. However, exogenous application of BR remarkably improved the gas exchange attributes, plant height, leaf area, cobs per plant, seedling dry weight both under drought and well-watered conditions. BR-induced promotion in growth and physiological and metabolic activities were mediated through increased protein synthesis enabling maintenance of tissue water potential and activities of antioxidant enzymes lowering the lipid peroxidation under drought.

363 citations

Journal ArticleDOI
TL;DR: The effects of water stress and foliar application of GB were more pronounced when applied at the flowering stage than at the vegetative stage, and exogenous GB application was only beneficial under stress conditions.
Abstract: Water shortage is a severe threat to the sustainability of crop production. Exogenous application of glycinebetaine (GB) and salicylic acid (SA) has been found very effective in reducing the adverse affects of drought stress. This study was conducted to examine the possible role of exogenous GB and SA application in improving the yield of hybrid sunflower (Helianthus annuus L.) under different irrigation regimes. There were three levels of irrigation, viz. control (normal irrigations), water stress at vegetative stage (irrigation missing at vegetative stage) and water stress at flowering stage (irrigation missing at flowering stage). GB and SA were applied exogenously at 100 and 0.724 mm, respectively, each at the vegetative and at the flowering stage. Control plants did not receive application of GB and SA. Water stress reduced the head diameter, number of achene, 1000-achene weight, achene yield and oil yield. Nevertheless, exogenous GB and SA application significantly improved these attributes under water stress. However, drought stress increased the free leaf proline and GB, and were further increased by exogenous application of GB and SA. However, exogenous GB application at the flowering stage was more effective than other treatments. Oil contents were also reduced under water stress; however, GB and SA application could not ameliorate the negative effect of water stress on achene oil contents. The effects of water stress and foliar application of GB were more pronounced when applied at the flowering stage than at the vegetative stage. Moreover, exogenous GB application was only beneficial under stress conditions.

352 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202337
202250
2021130
202066
201957
201853