scispace - formally typeset
Open AccessJournal ArticleDOI

Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii.

Daniel E. Voth, +1 more
- 01 Apr 2007 - 
- Vol. 9, Iss: 4, pp 829-840
TLDR
Current understanding of the cellular events that occur during parasitism of host cells by Coxiella, including deployment of a type IV secretion system to deliver effector proteins to the host cytosol is summarized.
Abstract
Summary Most intracellular parasites employ sophisticated mechanisms to direct biogenesis of a vacuolar replicative niche that circumvents default maturation through the endolysosomal cascade. However, this is not the case of the Q fever bacterium, Coxiella burnetii. This hardy, obligate intracellular pathogen has evolved to not only survive, but to thrive, in the harshest of intracellular compartments: the phagolysosome. Following internalization, the nascent Coxiella phagosome ultimately develops into a large and spacious parasitophorous vacuole (PV) that acquires lysosomal characteristics such as acidic pH, acid hydrolases and cationic peptides, defences designed to rid the host of intruders. However, transit of Coxiella to this environment is initially stalled, a process that is apparently modulated by interactions with the autophagic pathway. Coxiella actively participates in biogenesis of its PV by synthesizing proteins that mediate phagosome stalling, autophagic interactions, and development and maintenance of the mature vacuole. Among the potential mechanisms mediating these processes is deployment of a type IV secretion system to deliver effector proteins to the host cytosol. Here we summarize our current understanding of the cellular events that occur during parasitism of host cells by Coxiella.

read more

Citations
More filters
Journal ArticleDOI

Antimicrobial mechanisms of phagocytes and bacterial evasion strategies

TL;DR: An overview of the antimicrobial defences of the host cell is presented, with emphasis on macrophages, for which phagocytosis has been studied most extensively and some of the evasive strategies used by bacteria are described.
Journal ArticleDOI

From Q Fever to Coxiella burnetii Infection: a Paradigm Change.

TL;DR: All the progress made over the last 20 years on this topic are reviewed, including the breaking of the old dichotomy between “acute” and “chronic” Q fever and the achievement of determining the genome sequences of several strains of this species and comparative genomic analyses.
Journal ArticleDOI

The Phenotypes of Pluripotent Human Hepatic Progenitors

TL;DR: Human livers contain two pluripotent hepatic progenitors, hepatic stem cells and hepatoblasts, with size, morphology, and gene expression profiles distinct from that of mature hepatocytes.
Journal ArticleDOI

Endocytosis of viruses and bacteria.

TL;DR: The endocytic entry processes used by viruses and bacteria are discussed and strategies used by these dissimilar classes of pathogens are compared.
Journal ArticleDOI

Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1.

TL;DR: The data indicate that mAb 84 may be useful in eliminating residual hESC from differentiated cells populations for clinical applications, and the antigen is podocalyxin‐like protein‐1.
References
More filters
Journal ArticleDOI

Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages.

TL;DR: It is demonstrated that autophagic pathways can overcome the trafficking block imposed by M. tuberculosis, which is a hormonally, developmentally, and immunologically regulated process, represents an underapp appreciated innate defense mechanism for control of intracellular pathogens.
Journal ArticleDOI

Conjugative Transfer by the Virulence System of Legionella pneumophila

TL;DR: In this paper, a large number of mutants called dot that were unable to replicate intracellularly because of an inability of the bacteria to alter the endocytic pathway of macrophages were isolated.
Journal ArticleDOI

Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited.

TL;DR: Findings suggest that M. tuberculosis retards the maturation of its phagosome along the endosomal-lysosomal pathway and resides in a compartment with endosome, as opposed to lysosomal, characteristics; and the intraphagosomal pathway, i.e., the pathway followed by several intracellular parasites that inhibit phagosomes-lysOSome fusion, is heterogeneous.
Journal ArticleDOI

Phagosome maturation: aging gracefully.

TL;DR: The determinants and consequences of the fusion and fission reactions that underlie phagosomal maturation are the topic of this review.
Journal ArticleDOI

A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes.

TL;DR: It is shown that L. pneumophilaproduce a protein called RalF that functions as an exchange factor for the ADP ribosylation factor (ARF) family of guanosine triphosphatases (GTPases) and is a substrate of the Dot/Icm secretion apparatus.
Related Papers (5)