scispace - formally typeset
Open AccessJournal ArticleDOI

Origins and Evolution of Antibiotic Resistance

TLDR
A review of antibiotic resistance development over the past half-century can be found in this article, with the oft-restated conclusion that it is time to act and to restore the therapeutic applications of antibiotics.
Abstract
Antibiotics have always been considered one of the wonder discoveries of the 20th century. This is true, but the real wonder is the rise of antibiotic resistance in hospitals, communities, and the environment concomitant with their use. The extraordinary genetic capacities of microbes have benefitted from man's overuse of antibiotics to exploit every source of resistance genes and every means of horizontal gene transmission to develop multiple mechanisms of resistance for each and every antibiotic introduced into practice clinically, agriculturally, or otherwise. This review presents the salient aspects of antibiotic resistance development over the past half-century, with the oft-restated conclusion that it is time to act. To achieve complete restitution of therapeutic applications of antibiotics, there is a need for more information on the role of environmental microbiomes in the rise of antibiotic resistance. In particular, creative approaches to the discovery of novel antibiotics and their expedited and controlled introduction to therapy are obligatory.

read more

Citations
More filters
Journal ArticleDOI

Natural Antibiotic Resistance and Contamination by Antibiotic Resistance Determinants: The Two Ages in the Evolution of Resistance to Antimicrobials

TL;DR: The study of antibiotic resistance has been historically concentrated on the analysis of bacterial pathogens and on the consequences of acquiring resistance for human health, but the studies on antibiotic resistance should not be confined to clinical-associated ecosystems.
Journal ArticleDOI

Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review.

TL;DR: The final objective is to implement wastewater treatment technologies capable of assuring the production of UWTPs effluents with an acceptable level of ARB, to understand the factors and mechanisms that drive antibiotic resistance maintenance and selection in wastewater habitats.
Journal ArticleDOI

Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data

TL;DR: To prevent a striking rise in resistance in low-income and middle-income countries with large populations and to preserve antibiotic efficacy worldwide, programmes that promote rational use through coordinated efforts by the international community should be a priority.
Journal ArticleDOI

Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review

TL;DR: The aim of the present paper is to critically review the fate and removal of various antibiotics in wastewater treatment, focusing on different processes (i.e. biological processes, advanced treatment technologies and disinfection) in view of the current concerns related to the induction of toxic effects in aquatic and terrestrial organisms.
References
More filters
Journal ArticleDOI

Antibacterial resistance worldwide: causes, challenges and responses.

TL;DR: The optimism of the early period of antimicrobial discovery has been tempered by the emergence of bacterial strains with resistance to these therapeutics, and today, clinically important bacteria are characterized not only by single drug resistance but also by multiple antibiotic resistance.
Journal ArticleDOI

Acinetobacter baumannii: Emergence of a Successful Pathogen

TL;DR: This review details the significant advances that have been made in understanding of this remarkable organism over the last 10 years, including current taxonomy and species identification, issues with susceptibility testing, mechanisms of antibiotic resistance, global epidemiology, clinical impact of infection, host-pathogen interactions, and infection control and therapeutic considerations.
Journal ArticleDOI

A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics

TL;DR: The results suggest that all three major classes of bactericidal drugs can be potentiated by targeting bacterial systems that remediate hydroxyl radical damage, including proteins involved in triggering the DNA damage response, e.g., RecA.
Related Papers (5)