scispace - formally typeset
Open AccessJournal ArticleDOI

The Adenosine-Dependent Angiogenic Switch of Macrophages to an M2-Like Phenotype is Independent of Interleukin-4 Receptor Alpha (IL-4Rα) Signaling

TLDR
Adenosine signaling suppresses the TLR-dependent expression of TNF-α, IL-12, IFN-γ, and several other inflammatory cytokines by macrophages and induces the expression of vascular endothelial growth factor (VEGF) and IL-10.
Abstract
Murine macrophages are activated by interferon-γ (IFN-γ) and/or Toll-like receptor (TLR) agonists such as bacterial endotoxin (lipopolysaccharide [LPS]) to express an inflammatory (M1) phenotype characterized by the expression of nitric oxide synthase-2 (iNOS) and inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-12. In contrast, Th2 cytokines IL-4 and IL-13 activate macrophages by inducing the expression of arginase-1 and the anti-inflammatory cytokine IL-10 in an IL-4 receptor-α (IL-4Rα)-dependent manner. Macrophages activated in this way are designated as "alternatively activated" (M2a) macrophages. We have shown previously that adenosine A2A receptor (A(2A)R) agonists act synergistically with TLR2, TLR4, TLR7, and TLR9 agonists to switch macrophages into an "M2-like" phenotype that we have termed "M2d." Adenosine signaling suppresses the TLR-dependent expression of TNF-α, IL-12, IFN-γ, and several other inflammatory cytokines by macrophages and induces the expression of vascular endothelial growth factor (VEGF) and IL-10. We show here using mice lacking a functional IL-4Rα gene (IL-4Rα(-/-) mice) that this adenosine-mediated switch does not require IL-4Rα-dependent signaling. M2d macrophages express high levels of VEGF, IL-10, and iNOS, low levels of TNF-α and IL-12, and mildly elevated levels of arginase-1. In contrast, M2d macrophages do not express Ym1, Fizz1 (RELM-α), or CD206 at levels greater than those induced by LPS, and dectin-1 expression is suppressed. The use of these markers in vivo to identify "M2" macrophages thus provides an incomplete picture of macrophage functional status and should be viewed with caution.

read more

Citations
More filters
Journal ArticleDOI

Macrophage plasticity, polarization, and function in health and disease.

TL;DR: The protective and pathogenic role of the macrophage subsets in normal and pathological pregnancy, anti‐microbial defense, anti-tumor immunity, metabolic disease and obesity, asthma and allergy, atherosclerosis, fibrosis, wound healing, and autoimmunity are discussed.
Journal ArticleDOI

Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms

TL;DR: Whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions is discussed and an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation is provided.

Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms

TL;DR: The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling.
Journal ArticleDOI

The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets.

TL;DR: Insight into potential clinical application of adenosinergic and other purinergic‐targeting therapies and forecast how these might develop in combination with other anti‐cancer modalities are provided.
Journal ArticleDOI

Purinergic regulation of the immune system

TL;DR: How local purinergic signalling changes over time during tissue responses to injury or disease is reviewed, and the potential of targeting purInergic signalling pathways for the immunotherapeutic treatment of ischaemia, organ transplantation, autoimmunity or cancer is discussed.
References
More filters
Journal ArticleDOI

Exploring the full spectrum of macrophage activation.

TL;DR: This Review suggests a new grouping of macrophages based on three different homeostatic activities — host defence, wound healing and immune regulation, and proposes that similarly to primary colours, these three basic macrophage populations can blend into various other 'shades' of activation.
Journal ArticleDOI

Monocyte and macrophage heterogeneity

TL;DR: Recent studies have shown that monocyte heterogeneity is conserved in humans and mice, allowing dissection of its functional relevance: the different monocyte subsets seem to reflect developmental stages with distinct physiological roles, such as recruitment to inflammatory lesions or entry to normal tissues.
Journal ArticleDOI

Alternative Activation of Macrophages: Mechanism and Functions

TL;DR: In this paper, the authors assess recent research in this field, argue for a restricted definition, and explore pathways by which the T helper 2 (Th2) cell cytokines interleukin-4 (IL-4) and IL-13 mediate their effects on macrophage cell biology, their biosynthesis, and responses to a normal and pathological microenvironment.
Journal ArticleDOI

Macrophage activation and polarization.

TL;DR: The main functions of polarized macrophages are reviewed and the perspectives of this field are discussed, which include high endocytic clearance capacities and trophic factor synthesis, accompanied by reduced pro-inflammatory cytokine secretion.
Journal ArticleDOI

The many faces of macrophage activation

TL;DR: There appears to be at least three different populations of activated macrophages with three distinct biological functions, the most recent addition is the type 2-activated macrophage, which is anti-inflammatory and preferentially induces Th2-type humoral-immune responses to antigen.
Related Papers (5)