scispace - formally typeset
Open AccessJournal ArticleDOI

The extracellular matrix modulates the hallmarks of cancer

TLDR
It is suggested that the success of cancer prevention and therapy programs requires an intimate understanding of the reciprocal feedback between the evolving extracellular matrix, the tumor cells and its cancer‐associated cellular stroma.
Abstract
The extracellular matrix regulates tissue development and homeostasis, and its dysregulation contributes to neoplastic progression. The extracellular matrix serves not only as the scaffold upon which tissues are organized but provides critical biochemical and biomechanical cues that direct cell growth, survival, migration and differentiation and modulate vascular development and immune function. Thus, while genetic modifications in tumor cells undoubtedly initiate and drive malignancy, cancer progresses within a dynamically evolving extracellular matrix that modulates virtually every behavioral facet of the tumor cells and cancer-associated stromal cells. Hanahan and Weinberg defined the hallmarks of cancer to encompass key biological capabilities that are acquired and essential for the development, growth and dissemination of all human cancers. These capabilities include sustained proliferation, evasion of growth suppression, death resistance, replicative immortality, induced angiogenesis, initiation of invasion, dysregulation of cellular energetics, avoidance of immune destruction and chronic inflammation. Here, we argue that biophysical and biochemical cues from the tumor-associated extracellular matrix influence each of these cancer hallmarks and are therefore critical for malignancy. We suggest that the success of cancer prevention and therapy programs requires an intimate understanding of the reciprocal feedback between the evolving extracellular matrix, the tumor cells and its cancer-associated cellular stroma.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Analysis of nanoparticle delivery to tumours

TL;DR: This Perspective explores and explains the fundamental dogma of nanoparticle delivery to tumours and answers two central questions: ‘ how many nanoparticles accumulate in a tumour?’ and ‘how does this number affect the clinical translation of nanomedicines?'
Journal ArticleDOI

The Tumor Microenvironment Innately Modulates Cancer Progression

TL;DR: Cross-talk between cancer cells and the proximal immune cells ultimately results in an environment that fosters tumor growth and metastasis, and understanding the nature of this dialog will allow for improved therapeutics that simultaneously target multiple components of the TME, increasing the likelihood of favorable patient outcomes.
Journal ArticleDOI

Macrophages as regulators of tumour immunity and immunotherapy

TL;DR: How macrophage shape local immune responses in the tumour microenvironment to both suppress and promote immunity to tumours is described and the potential of targeting tumour-associated macrophages to enhance antitumour immune responses is discussed.
Journal ArticleDOI

CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review.

TL;DR: CD8 + T cell priming is directed essentially as a corroboration work between cells of innate immunity including dendritic cells (DCs) and natural killer (NK) cells with CD4 + T cells in adoptive immunity for making durable and efficient antitumor immune responses.
Journal ArticleDOI

The extracellular matrix: Tools and insights for the "omics" era.

TL;DR: In this article, the extracellular matrix (ECM) is a fundamental component of multicellular organisms that provides mechanical and chemical cues that orchestrate cellular and tissue organization and functions.
References
More filters
Journal ArticleDOI

Hallmarks of cancer: the next generation.

TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.
Journal ArticleDOI

The hallmarks of cancer.

TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.
Journal ArticleDOI

Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation

TL;DR: It is proposed that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass needed to produce a new cell.
Journal ArticleDOI

Role of YAP/TAZ in mechanotransduction

TL;DR: YAP/TAZ are identified as sensors and mediators of mechanical cues instructed by the cellular microenvironment and are functionally required for differentiation of mesenchymal stem cells induced by ECM stiffness and for survival of endothelial cells regulated by cell geometry.
Journal ArticleDOI

Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling

TL;DR: Reduction of lysyl oxidase-mediated collagen crosslinking prevented MMTV-Neu-induced fibrosis, decreased focal adhesions and PI3K activity, impeded malignancy, and lowered tumor incidence, and data show how collagenCrosslinking can modulate tissue fibrosis and stiffness to force focal adhesion, growth factor signaling and breast malignancies.
Related Papers (5)