scispace - formally typeset
Z

Zhi Li

Researcher at Chinese Academy of Sciences

Publications -  291
Citations -  16603

Zhi Li is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Biology & Medicine. The author has an hindex of 47, co-authored 237 publications receiving 11439 citations. Previous affiliations of Zhi Li include Tsinghua University & University of Wollongong.

Papers
More filters
Journal ArticleDOI

Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction

TL;DR: Experiments demonstrated that maintaining the Fe as isolated atoms and incorporating nitrogen was essential to deliver the high performance, and the high reactivity to the high efficiency of the single Fe atoms in transporting electrons to the adsorbed OH species.
Journal ArticleDOI

Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on SrTiO3

TL;DR: In this paper, the authors reported high transition temperature superconductivity in one unitcell (UC) thick FeSe films grown on a Se-etched SrTiO3 (001) substrate by molecular beam epitaxy (MBE).
Journal ArticleDOI

Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films

TL;DR: The phase diagram for an FeSe monolayer grown on a SrTiO3 substrate is reported, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure, and strong indications of superconductivity are observed with a transition temperature of 65±5 K.
Journal ArticleDOI

Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites.

TL;DR: The roles of nanoparticles and isolated single atom sites in catalytic reactions are surveyed and the challenges and opportunities of well-defined materials for catalyst development are highlighted, gaining a fundamental understanding of their active sites.
Journal ArticleDOI

Direct observation of noble metal nanoparticles transforming to thermally stable single atoms.

TL;DR: An unexpected phenomenon that noble metal nanoparticles can be transformed to thermally stable single atoms (Pd, Pt, Au-NPs) above 900 °C in an inert atmosphere and exhibited even better activity and selectivity than nanoparticles for semi-hydrogenation of acetylene.