scispace - formally typeset
Search or ask a question
JournalISSN: 0173-9565

Marine Ecology 

Wiley-Blackwell
About: Marine Ecology is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Population & Benthic zone. It has an ISSN identifier of 0173-9565. Over the lifetime, 1720 publications have been published receiving 49022 citations. The journal is also known as: Pubblicazioni della Stazione Zoologica di Napoli. I, Marine ecology & Marine ecology (Berlin. Print).


Papers
More filters
Journal ArticleDOI
TL;DR: The structural attributes and biotic effects of the habitats that corals, sea pens, sponges and xenophyophores offer other organisms and the biotic structures they create to habitat heterogeneity and diversity on the deep continental margins are highlighted.
Abstract: Biological structures exert a major influence on species diversity at both local and regional scales on deep continental margins. Some organisms use other species as substrates for attachment, shelter, feeding or parasitism, but there may also be mutual benefits from the association. Here, we highlight the structural attributes and biotic effects of the habitats that corals, sea pens, sponges and xenophyophores offer other organisms. The environmental setting of the biological structures influences their species composition. The importance of benthic species as substrates seems to increase with depth as the complexity of the surrounding geological substrate and food supply decline. There are marked differences in the degree of mutualistic relationships between habitat-forming taxa. This is especially evident for scleractinian corals, which have high numbers of facultative associates (commensals) and few obligate associates (mutualists), and gorgonians, with their few commensals and many obligate associates. Size, flexibility and architectural complexity of the habitat-forming organism are positively related to species diversity for both sessile and mobile species. This is mainly evident for commensal species sharing a facultative relationship with their host. Habitat complexity is enhanced by the architecture of biological structures, as well as by biological interactions. Colony morphology has a great influence on feeding efficiency for suspension feeders. Suspension feeding, habitat-forming organisms modify the environment to optimize their food uptake. This environmental advantage is also passed on to associated filter-feeding species. These effects are poorly understood but represent key points for understanding ecosystems and biodiversity on continental margins. In this paper we explore the contributions of organisms and the biotic structures they create (rather than physical modifications) to habitat heterogeneity and diversity on the deep continental margins.

466 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarise the salient features of sandy beaches as functional ecosystems in 50 ‘key statements’; these provide a succinct synopsis of the main structural and functional characteristics of these highly dynamic systems.
Abstract: Escalating pressures caused by the combined effects of population growth, demographic shifts, economic development and global climate change pose unprecedented threats to sandy beach ecosystems worldwide. Conservation of beaches as functional ecosystems and protection of their unique biodiversity requires management interventions that not only mitigate threats to physical properties of sandy shores, but also include ecological dimensions. Yet, beach management remains overwhelmingly focused on engineering interventions. Here we summarise the key outcomes of several workshops, held during the 2006 Sandy Beach Ecology Symposium in Vigo, Spain, that addressed issues of climate change, beach management and sampling methodology. Because efficient communication between managers and ecologists is critical, we summarise the salient features of sandy beaches as functional ecosystems in 50 ‘key statements’; these provide a succinct synopsis of the main structural and functional characteristics of these highly dynamic systems. Key outcomes of the workshops include a set of recommendations on designs and methods for sampling the benthic infaunal communities of beaches, the identification of the main ecological effects caused by direct and indirect human interventions, the predicted consequence of climate change for beach ecosystems, and priority areas for future research.

375 citations

Journal Article
TL;DR: In this article, the authors present a porte principalement sur le transport par les vagues internes vers le rivage de Pachygrapsus crassipes (Scripps Institution of Oceanography, La Jolla).
Abstract: L'etude porte principalement sur le transport par les vagues internes vers le rivage de Pachygrapsus crassipes (Scripps Institution of Oceanography, La Jolla

339 citations

Journal ArticleDOI
TL;DR: The selection pressures on growth and the resultant evolution of growth from a mechanistic viewpoint are explored and the prevailing expectation that fishing-induced evolution should always lead to slower growth is challenged.
Abstract: The interest in fishing-induced life-history evolution has been growing in the last decade, in part because of the increasing number of studies suggesting evolutionary changes in life-history traits, and the potential ecological and economic consequences these changes may have. Among the traits that could evolve in response to fishing, growth has lately received attention. However, critical reading of the literature on growth evolution in fish reveals conceptual confusion about the nature of ‘growth’ itself as an evolving trait, and about the different ways fishing can affect growth and size-at-age of fish, both on ecological and on evolutionary time-scales. It is important to separate the advantages of being big and the costs of growing to a large size, particularly when studying life-history evolution. In this review, we explore the selection pressures on growth and the resultant evolution of growth from a mechanistic viewpoint. We define important concepts and outline the processes that must be accounted for before observed phenotypic changes can be ascribed to growth evolution. When listing traits that could be traded-off with growth rate, we group the mechanisms into those affecting resource acquisition and those governing resource allocation. We summarize potential effects of fishing on traits related to growth and discuss methods for detecting evolution of growth. We also challenge the prevailing expectation that fishing-induced evolution should always lead to slower growth.

267 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed hypotheses concerning the ecological effects of beach habitat loss associated with coastal armoring and examined the results on paired armored and unarmored segments of narrow bluff-backed beaches in southern California.
Abstract: Use of coastal armoring is expected to escalate in response to the combination of expanding human populations, beach erosion, and sea level rise along the coasts. To provide a conceptual framework, we developed hypotheses concerning the ecological effects of beach habitat loss associated with coastal armoring. As beaches narrow in response to armoring, dry upper intertidal zones should be lost disproportionately, reducing the habitat types available and the diversity and abundance of macroinvertebrates. Predators, such as shorebirds, could respond to a combination of (i) habitat loss; (ii) decreased accessibility at high tides; and (iii) reduced prey availability on armored beaches. To examine those predictions, zone widths and the distribution and abundance of macroinvertebrates and birds were compared on paired armored and unarmored segments of narrow bluff-backed beaches in southern California. Our results supported the predictions and revealed some unexpected effects of armoring on birds. Dry upper beach zones were lacking and mid-beach zones were narrower (>2 times) year-round on armored segments compared to adjacent unarmored segments. The abundance, biomass and size of upper intertidal macroinvertebrates were also significantly lower on armored segments. Shorebirds, most of which were foraging, responded predictably with significantly lower species richness (two times) and abundance (>3 times) on armored segments. Gulls and other birds (including seabirds), which use beaches primarily for roosting, were also significantly lower in abundance (>4 times and >7 times respectively) on armored segments, an important unexpected result. Given the accelerating pressures on sandy beaches from coastal development, erosion and rising sea levels, our results indicate that further investigation of ecological responses to coastal armoring is needed for the management and conservation of these ecosystems.

248 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20231
20221
202160
202040
201932
201844