scispace - formally typeset
Open AccessJournal ArticleDOI

Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages.

Susan L. Fink, +1 more
- 01 Nov 2006 - 
- Vol. 8, Iss: 11, pp 1812-1825
TLDR
This mechanism of caspase‐1‐mediated cell death provides additional experimental evidence supporting pyroptosis as a novel pathway of inflammatory programmed cell death.
Abstract
Salmonella enterica serovar Typhimurium invades host macrophages and induces a unique caspase-1-dependent pathway of cell death termed pyroptosis, which is activated during bacterial infection in vivo. We demonstrate DNA cleavage during pyroptosis results from caspase-1-stimulated nuclease activity. Although poly(ADP-ribose) polymerase (PARP) activation by fragmented DNA depletes cellular ATP to cause lysis during oncosis, the rapid lysis characteristic of Salmonella-infected macrophages does not require PARP activity or DNA fragmentation. Membrane pores between 1.1 and 2.4 nm in diameter form during pyroptosis of host cells and cause swelling and osmotic lysis. Pore formation requires host cell actin cytoskeleton rearrangements and caspase-1 activity, as well as the bacterial type III secretion system (TTSS); however, insertion of functional TTSS translocons into the host membrane is not sufficient to directly evoke pore formation. Concurrent with pore formation, inflammatory cytokines are released from infected macrophages. This mechanism of caspase-1-mediated cell death provides additional experimental evidence supporting pyroptosis as a novel pathway of inflammatory programmed cell death.

read more

Citations
More filters
Journal ArticleDOI

Salmonella: from pathogenesis to therapeutics.

TL;DR: This review will highlight some of the central themes that arose during the course of the conference, as it is so brief, it will describe only a fraction of the many excellent talks and posters presented.
Journal ArticleDOI

Monocyte Derived Microvesicles Deliver a Cell Death Message via Encapsulated Caspase-1

TL;DR: In the process of explaining how endotoxin activated monocytes are able to induce apoptosis of vascular smooth muscle cells when co-cultured, a transcellular apoptosis inducing pathway that utilizes caspase-1 containing microvesicles is uncovered.
Journal ArticleDOI

Genetics, Cell Biology, and Pathophysiology of Pancreatitis.

TL;DR: The genetics, cell biology, and immunology of pancreatitis is reviewed with a focus on protease activation pathways and other early events, and clinical and experimental observations provide compelling evidence that premature intrapancreatic activation of digestive proteases is critical in pancreatitis onset.
Journal ArticleDOI

Pathogenesis of enteric Salmonella infections.

TL;DR: New advances in animal models have allowed researchers to further define the contribution of specific bacterial and host factors involved in Salmonella-induced enterocolitis.
Journal ArticleDOI

Role of pyroptosis in cardiovascular diseases.

TL;DR: Recent scientific discoveries of pyroptosis's involvement in atherosclerosis, myocardial infarction, diabetic cardiomyopathy, reperfusion injury and myocarditis are summarized and new and emerging evidence suggesting that pyroPTosis signaling pathways may be potential therapeutic targets in cardiovascular diseases are organized.
References
More filters
Journal ArticleDOI

Gout-associated uric acid crystals activate the NALP3 inflammasome

TL;DR: It is shown that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1β and IL-18 in mice deficient in the IL-1β receptor.
Journal ArticleDOI

Release of chromatin protein HMGB1 by necrotic cells triggers inflammation

TL;DR: It is reported that Hmgb1-/- necrotic cells have a greatly reduced ability to promote inflammation, which proves that the release of HMGB1 can signal the demise of a cell to its neighbours, and cells undergoing apoptosis are programmed to withhold the signal that is broadcast by cells that have been damaged or killed by trauma.
Journal ArticleDOI

A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD

TL;DR: A caspase-activated deoxyribonuclease (CAD) and its inhibitor (ICAD) have now been identified in the cytoplasmic fraction of mouse lymphoma cells and seems to function as a chaperone for CAD during its synthesis, remaining complexed with CAD to inhibit its DNase activity.
Journal ArticleDOI

Cryopyrin activates the inflammasome in response to toxins and ATP

TL;DR: It is shown that cryopyrin-deficient macrophages cannot activate caspase-1 in response to Toll-like receptor agonists plus ATP, the latter activating the P2X7 receptor to decrease intracellular K+ levels.
Journal ArticleDOI

Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells

TL;DR: A wide variety of pathogenic microorganisms have been demonstrated to cause eukaryotic cell death, either as a consequence of infecting host cells or by producing toxic products, and apoptosis in many of these systems is characterized as apoptosis.
Related Papers (5)