scispace - formally typeset
Journal ArticleDOI

Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation.

Reads0
Chats0
TLDR
It is proposed that the singular phosphorylation of the amino-terminus of histone H3 may be involved in facilitating two key functions during mitosis: (1) regulate protein-protein interactions to promote binding of trans-acting factors that “drive” chromatin condensation as cells enter M-phase and (2) coordinate chromatin decondensation associated with M- phase.
Abstract
We have generated and characterized a novel site-specific antibody highly specific for the phosphorylated form of the amino-terminus of histone H3 (Ser10). In this study, we used this antibody to examine in detail the relationship between H3 phosphorylation and mitotic chromosome condensation in mammalian cells. Our results extend previous biochemical studies by demonstrating that mitotic phosphorylation of H3 initiates nonrandomly in pericentromeric heterochromatin in late G2 interphase cells. Following initiation, H3 phosphorylation appears to spread throughout the condensing chromatin and is complete in most cell lines just prior to the formation of prophase chromosomes, in which a phosphorylated, but nonmitotic, chromosomal organization is observed. In general, there is a precise spatial and temporal correlation between H3 phosphorylation and initial stages of chromatin condensation. Dephosphorylation of H3 begins in anaphase and is complete immediately prior to detectable chromosome decondensation in telophase cells. We propose that the singular phosphorylation of the amino-terminus of histone H3 may be involved in facilitating two key functions during mitosis: (1) regulate protein-protein interactions to promote binding of trans-acting factors that "drive" chromatin condensation as cells enter M-phase and (2) coordinate chromatin decondensation associated with M-phase.

read more

Citations
More filters
Journal ArticleDOI

The language of covalent histone modifications.

TL;DR: It is proposed that distinct histone modifications, on one or more tails, act sequentially or in combination to form a ‘histone code’ that is, read by other proteins to bring about distinct downstream events.
Journal ArticleDOI

Regulation of chromatin structure by site-specific histone H3 methyltransferases

TL;DR: A functional interdependence of site-specific H3 tail modifications is revealed and a dynamic mechanism for the regulation of higher-order chromatin is suggested.
Journal ArticleDOI

Histone acetylation and an epigenetic code

TL;DR: Recent evidence raises the interesting possibility that an acetylation-based code may operate through both mitosis and meiosis, providing a possible mechanism for germ-line transmission of epigenetic changes.
References
More filters
Journal ArticleDOI

Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4

TL;DR: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products.
Journal Article

Cleavage of structural proteins during the assemble of the head of bacterio-phage T4

U. K. Laemmli
- 01 Jan 1970 - 
TL;DR: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products as mentioned in this paper.
Journal ArticleDOI

Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries

TL;DR: A method of in situ hybridization for visualizing individual human chromosomes from pter to qter, both in metaphase spreads and interphase nuclei, is reported and should be useful for both karyotypic studies and for the analysis of chromosome topography in interphase cells.
Journal ArticleDOI

Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: A molecular model for the formation of heterochromatin in yeast

TL;DR: It is shown that the SIR3 and SIR4 proteins interact with specific silencing domains of the H3 and H4 N-termini in vitro, which proposes a model for heterochromatin-mediated transcriptional silencing in yeast, which may serve as a paradigm for other eukaryotic organisms as well.
Journal ArticleDOI

Topoisomerase II is a structural component of mitotic chromosome scaffolds

TL;DR: The results suggest that topoisomerase II may be an enzyme that is also a structural protein of interphase nuclei and mitotic chromosomes, and an abundant nuclear enzyme that controls DNA topological states.
Related Papers (5)