scispace - formally typeset
Open AccessJournal ArticleDOI

Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine

Zhen Pan, +1 more
- 06 Jun 2012 - 
- Vol. 2, Iss: 3, pp 366-377
TLDR
In the latest decade, some facile fabrication approaches at room temperature were put forward; more appropriate pore structures were designed and achieved; the mechanical properties were investigated both for dry and wet scaffolds and the effects of pore size and porosity on in vitro biodegradation were revealed.
Abstract
Porous scaffolds fabricated from biocompatible and biodegradable polymers play vital roles in tissue engineering and regenerative medicine. Among various scaffold matrix materials, poly(lactide-co-glycolide) (PLGA) is a very popular and an important biodegradable polyester owing to its tunable degradation rates, good mechanical properties and processibility, etc. This review highlights the progress on PLGA scaffolds. In the latest decade, some facile fabrication approaches at room temperature were put forward; more appropriate pore structures were designed and achieved; the mechanical properties were investigated both for dry and wet scaffolds; a long time biodegradation of the PLGA scaffold was observed and a three-stage model was established; even the effects of pore size and porosity on in vitro biodegradation were revealed; the PLGA scaffolds have also been implanted into animals, and some tissues have been regenerated in vivo after loading cells including stem cells.

read more

Citations
More filters
Journal ArticleDOI

An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering

TL;DR: The analysis of the state of the art in the field reveals the presence of current innovative techniques for scaffolds and material manufacturing that are currently opening the way to prepare biomimetic PLGA substrates able to modulate cell interaction for improved substitution, restoration, or enhancement of bone tissue function.
Journal ArticleDOI

3D bioactive composite scaffolds for bone tissue engineering.

TL;DR: This review will consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE.
Journal ArticleDOI

Advancing biomaterials of human origin for tissue engineering

TL;DR: An exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications is focused on to provide inspiration for the design of future biomaterials.
Journal ArticleDOI

Current development of biodegradable polymeric materials for biomedical applications

TL;DR: This review outlines the current development of biodegradable natural and synthetic polymeric materials for various biomedical applications, including tissue engineering, temporary implants, wound healing, and drug delivery.
Journal ArticleDOI

Cell–Material Interactions Revealed Via Material Techniques of Surface Patterning

TL;DR: The pertinent work sheds new insight into the cell–material interactions, and is stimulating for biomaterial design in regenerative medicine, tissue engineering, and high‐throughput detection, diagnosis, and drug screening.
References
More filters
Journal Article

Tissue engineering : Frontiers in biotechnology

R. Langer, +1 more
- 01 Jan 1993 - 
Journal ArticleDOI

Tissue Cells Feel and Respond to the Stiffness of Their Substrate

TL;DR: An understanding of how tissue cells—including fibroblasts, myocytes, neurons, and other cell types—sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels with which elasticity can be tuned to approximate that of tissues.
Journal ArticleDOI

Scaffolds in tissue engineering bone and cartilage.

TL;DR: Research on the tissue engineering of bone and cartilage from the polymeric scaffold point of view is reviews from a biodegradable and bioresorbable perspective.
Journal ArticleDOI

On the mechanisms of biocompatibility.

David F. Williams
- 01 Jul 2008 - 
TL;DR: It is shown that, in the vast majority of circumstances, the sole requirement for biocompatibility in a medical device intended for long-term contact with the tissues of the human body is that the material shall do no harm to those tissues, achieved through chemical and biological inertness.
Journal ArticleDOI

Mechanisms of polymer degradation and erosion

TL;DR: The most important features of the degradation and erosion of degradable polymers in vitro are discussed in this article, where a brief survey on approaches to polymer degradation and degradation is given.
Related Papers (5)