scispace - formally typeset
Open AccessJournal ArticleDOI

The gut flora as a forgotten organ

Ann M O'Hara, +1 more
- 01 Jul 2006 - 
- Vol. 7, Iss: 7, pp 688-693
TLDR
The flora has a collective metabolic activity equal to a virtual organ within an organ, and the mechanisms underlying the conditioning influence of the bacteria on mucosal homeostasis and immune responses are beginning to be unravelled.
Abstract
The intestinal microflora is a positive health asset that crucially influences the normal structural and functional development of the mucosal immune system. Mucosal immune responses to resident intestinal microflora require precise control and an immunosensory capacity for distinguishing commensal from pathogenic bacteria. In genetically susceptible individuals, some components of the flora can become a liability and contribute to the pathogenesis of various intestinal disorders, including inflammatory bowel diseases. It follows that manipulation of the flora to enhance the beneficial components represents a promising therapeutic strategy. The flora has a collective metabolic activity equal to a virtual organ within an organ, and the mechanisms underlying the conditioning influence of the bacteria on mucosal homeostasis and immune responses are beginning to be unravelled. An improved understanding of this hidden organ will reveal secrets that are relevant to human health and to several infectious, inflammatory and neoplastic disease processes.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The gut microbiota shapes intestinal immune responses during health and disease

TL;DR: Findings indicating that developmental aspects of the adaptive immune system are influenced by bacterial colonization of the gut are discussed, and the possibility that the mammalian immune system, which seems to be designed to control microorganisms, is in fact controlled by microorganisms is raised.
Journal ArticleDOI

Gut Microbiota in Health and Disease

TL;DR: The advances in modeling and analysis of gut microbiota will further the authors' knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.
Journal ArticleDOI

Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour

TL;DR: The emerging concept of a microbiota–gut–brain axis suggests that modulation of the gut microbiota may be a tractable strategy for developing novel therapeutics for complex CNS disorders.
Journal ArticleDOI

The impact of the gut microbiota on human health: an integrative view.

TL;DR: It is suggested that a holistic approach to studying the microbiota that goes beyond characterization of community composition and encompasses dynamic interactions between all components of the microbiota and host tissue over time will be crucial for building predictive models for diagnosis and treatment of diseases linked to imbalances in the microbiota.
Journal ArticleDOI

The gut microbiota — masters of host development and physiology

TL;DR: The gut microbiota has a beneficial role during normal homeostasis, modulating the host's immune system as well as influencing host development and physiology, including organ development and morphogenesis, and host metabolism.
References
More filters
Journal ArticleDOI

Diversity of the human intestinal microbial flora.

TL;DR: A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms, and significant intersubject variability and differences between stool and mucosa community composition were discovered.
Journal ArticleDOI

Obesity alters gut microbial ecology

TL;DR: Analysis of the microbiota of genetically obese ob/ob mice, lean ob/+ and wild-type siblings, and their ob/+ mothers, all fed the same polysaccharide-rich diet, indicates that obesity affects the diversity of the gut microbiota and suggests that intentional manipulation of community structure may be useful for regulating energy balance in obese individuals.
Journal ArticleDOI

The gut microbiota as an environmental factor that regulates fat storage

TL;DR: In this article, the authors found that conventionalization of adult germ-free C57BL/6 mice with a normal microbiota harvested from the distal intestine (cecum) of conventionally raised animals produces a 60% increase in body fat content and insulin resistance within 14 days despite reduced food intake.
Journal ArticleDOI

Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis

TL;DR: It is shown that commensal bacteria are recognized by TLRs under normal steady-state conditions, and this interaction plays a crucial role in the maintenance of intestinal epithelial homeostasis and protection from injury.
Journal ArticleDOI

An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system.

TL;DR: During colonization of animals with the ubiquitous gut microorganism Bacteroides fragilis, a bacterial polysaccharide (PSA) directs the cellular and physical maturation of the developing immune system.
Related Papers (5)