scispace - formally typeset
Open AccessJournal ArticleDOI

Collagen reorganization at the tumor-stromal interface facilitates local invasion

TLDR
Three tumor-associated collagen signatures (TACS) are observed and defined that provide novel markers to locate and characterize tumors and should provide indications that a tumor is, or could become, invasive, and may serve as part of a strategy to help identify and characterize breast tumors in animal and human tissues.
Abstract
Stromal-epithelial interactions are of particular significance in breast tissue as misregulation of these interactions can promote tumorigenesis and invasion. Moreover, collagen-dense breast tissue increases the risk of breast carcinoma, although the relationship between collagen density and tumorigenesis is not well understood. As little is known about epithelial-stromal interactions in vivo, it is necessary to visualize the stroma surrounding normal epithelium and mammary tumors in intact tissues to better understand how matrix organization, density, and composition affect tumor formation and progression. Epithelial-stromal interactions in normal mammary glands, mammary tumors, and tumor explants in three-dimensional culture were studied with histology, electron microscopy, and nonlinear optical imaging methodologies. Imaging of the tumor-stromal interface in live tumor tissue ex vivo was performed with multiphoton laser-scanning microscopy (MPLSM) to generate multiphoton excitation (MPE) of endogenous fluorophores and second harmonic generation (SHG) to image stromal collagen. We used both laser-scanning multiphoton and second harmonic generation microscopy to determine the organization of specific collagen structures around ducts and tumors in intact, unfixed and unsectioned mammary glands. Local alterations in collagen density were clearly seen, allowing us to obtain three-dimensional information regarding the organization of the mammary stroma, such as radiating collagen fibers that could not have been obtained using classical histological techniques. Moreover, we observed and defined three tumor-associated collagen signatures (TACS) that provide novel markers to locate and characterize tumors. In particular, local cell invasion was found predominantly to be oriented along certain aligned collagen fibers, suggesting that radial alignment of collagen fibers relative to tumors facilitates invasion. Consistent with this observation, primary tumor explants cultured in a randomly organized collagen matrix realigned the collagen fibers, allowing individual tumor cells to migrate out along radially aligned fibers. The presentation of these tumor-associated collagen signatures allowed us to identify pre-palpable tumors and see cells at the tumor-stromal boundary invading into the stroma along radially aligned collagen fibers. As such, TACS should provide indications that a tumor is, or could become, invasive, and may serve as part of a strategy to help identify and characterize breast tumors in animal and human tissues.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling

TL;DR: Reduction of lysyl oxidase-mediated collagen crosslinking prevented MMTV-Neu-induced fibrosis, decreased focal adhesions and PI3K activity, impeded malignancy, and lowered tumor incidence, and data show how collagenCrosslinking can modulate tissue fibrosis and stiffness to force focal adhesion, growth factor signaling and breast malignancies.
Journal ArticleDOI

The extracellular matrix: A dynamic niche in cancer progression

TL;DR: The extracellular matrix (ECM), a complex network of macromolecules with distinctive physical, biochemical, and biomechanical properties, is commonly deregulated and becomes disorganized in diseases such as cancer.
Journal ArticleDOI

A Tense Situation: Forcing Tumour Progression

TL;DR: The changing force that cells experience needs to be considered when trying to understand the complex nature of tumorigenesis.
Journal ArticleDOI

Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma.

TL;DR: It is shown that systemic administration of an enzymatic agent can ablate stromal HA from autochthonous murine PDA, normalize IFP, and re-expand the microvasculature and in combination with the standard chemotherapeutic, gemcitabine, the treatment permanently remodels the tumor microenvironment and consistently achieves objective tumor responses, resulting in a near doubling of overall survival.
Journal ArticleDOI

Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues

TL;DR: The focus of this Commentary will be on identifying and describing the fundamental features of 3D cell culture systems that influence cell structure, adhesion, mechanotransduction and signaling in response to soluble factors, which regulate overall cellular function in ways that depart dramatically from traditional 2D culture formats.
References
More filters

Image processing with ImageJ

TL;DR: ImageJ is an open source Java-written program that is used for many imaging applications, including those that that span the gamut from skin analysis to neuroscience, and can read most of the widely used and significant formats used in biomedical images.
Journal ArticleDOI

Two-Photon Laser Scanning Fluorescence Microscopy

TL;DR: The fluorescence emission increased quadratically with the excitation intensity so that fluorescence and photo-bleaching were confined to the vicinity of the focal plane as expected for cooperative two-photon excitation.
Journal ArticleDOI

Nonlinear magic: multiphoton microscopy in the biosciences

TL;DR: Multiphoton microscopy has found a niche in the world of biological imaging as the best noninvasive means of fluorescence microscopy in tissue explants and living animals and its use is now increasing exponentially.
Journal ArticleDOI

Tumour-cell invasion and migration: diversity and escape mechanisms

TL;DR: Cancer cells possess a broad spectrum of migration and invasion mechanisms and learning more about the cellular and molecular basis of these different migration/invasion programmes will help to understand how cancer cells disseminate and lead to new treatment strategies.
Journal ArticleDOI

Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation

TL;DR: Applications involving a range of intrinsic molecules and molecular assemblies that enable direct visualization of tissue morphology, cell metabolism, and disease states such as Alzheimer's disease and cancer are compiled and demonstrated.
Related Papers (5)