scispace - formally typeset
Search or ask a question
JournalISSN: 2153-7658

Therapeutic hypothermia and temperature management 

Mary Ann Liebert, Inc.
About: Therapeutic hypothermia and temperature management is an academic journal published by Mary Ann Liebert, Inc.. The journal publishes majorly in the area(s): Hypothermia & Medicine. It has an ISSN identifier of 2153-7658. Over the lifetime, 404 publications have been published receiving 2427 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is made the case that further elucidation of novel cold responsive pathways might lead to major breakthroughs in the treatment of acute brain injury, chronic neurological diseases, and have broad potential implications for medicines of the distant future, including scenarios such as the prevention of adverse effects of long-duration spaceflight, among others.
Abstract: Three decades of animal studies have reproducibly shown that hypothermia is profoundly cerebroprotective during or after a central nervous system (CNS) insult. The success of hypothermia in preclinical acute brain injury has not only fostered continued interest in research on the classic secondary injury mechanisms that are prevented or blunted by hypothermia but has also sparked a surge of new interest in elucidating beneficial signaling molecules that are increased by cooling. Ironically, while research into cold-induced neuroprotection is enjoying newfound interest in chronic neurodegenerative disease, conversely, the scope of the utility of therapeutic hypothermia (TH) across the field of acute brain injury is somewhat controversial and remains to be fully defined. This has led to the era of Targeted Temperature Management, which emphasizes a wider range of temperatures (33-36°C) showing benefit in acute brain injury. In this comprehensive review, we focus on our current understandings of the novel neuroprotective mechanisms activated by TH, and discuss the critical importance of developmental age germane to its clinical efficacy. We review emerging data on four cold stress hormones and three cold shock proteins that have generated new interest in hypothermia in the field of CNS injury, to create a framework for new frontiers in TH research. We make the case that further elucidation of novel cold responsive pathways might lead to major breakthroughs in the treatment of acute brain injury, chronic neurological diseases, and have broad potential implications for medicines of the distant future, including scenarios such as the prevention of adverse effects of long-duration spaceflight, among others. Finally, we introduce several new phrases that readily summarize the essence of the major concepts outlined by this review-namely, Ultramild Hypothermia, the "Responsivity of Cold Stress Pathways," and "Hypothermia in a Syringe."

51 citations

Journal ArticleDOI
TL;DR: It is concluded that when TH is indiscriminately provided to a large population of OHCA survivors with a nonshockable first documented rhythm, evidence for its effectiveness is diminished and more uniform and rigid guidelines for application are suggested.
Abstract: This study was done to determine the effectiveness of therapeutic hypothermia (TH) after out-of-hospital cardiac arrest (OHCA) among a large cohort of adults in the Cardiac Arrest Registry to Enhance Survival (CARES), with an emphasis on subgroups with a nonshockable first documented rhythm. This was an IRB approved retrospective cohort study. All adult index events at participating sites from November 2010 to December 2013 were study eligible. All patient data elements were provided. Summary statistics were calculated for all patients with and without TH. For multivariate adjustment, a multilevel (i.e., hierarchical), mixed-effects logistic regression (MLR) model was used with hospitals treated as random effects. Propensity score matching (PSM) on both shockable and nonshockable patients was done as a sensitivity analysis. After predefined exclusions, our final sample size was 6369 records for analysis: shockable=2992 (47.0%); asystole=1657 (26.0%); pulseless electrical activity=1249 (19.6%); other unspecified nonshockable=471 (7.4%). Unadjusted differences in neurological status at hospital discharge with and without TH were similar (p=0.295). After multivariate adjustment, TH had either no association with good neurological status at hospital discharge or that TH was actually associated with worse neurological outcome, particularly in patients with a nonshockable first documented rhythm (i.e., for NS patients, MLR odds ratio for TH=1.444; 95% CI [1.039, 2.006] p=0.029, and OR=1.017, p=0.927 via PSM). Highlighting our limitations, we conclude that when TH is indiscriminately provided to a large population of OHCA survivors with a nonshockable first documented rhythm, evidence for its effectiveness is diminished. We suggest more uniform and rigid guidelines for application.

47 citations

Journal ArticleDOI
TL;DR: The prespecified pooled analysis of RAPID MI-ICE and CHILL-MI indicates a reduction of myocardial IS and reduction in heart failure by 1-3 hours with endovascular cooling in association with primary PCI of acute STEMI predominantly in patients with large area of mycardium at risk.
Abstract: In the randomized rapid intravascular cooling in myocardial infarction as adjunctive to percutaneous coronary intervention (RAPID MI-ICE) and rapid endovascular catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction CHILL-MI studies, hypothermia was rapidly induced in conscious patients with ST-elevation myocardial infarction (STEMI) by a combination of cold saline and endovascular cooling. Twenty patients in RAPID MI-ICE and 120 in CHILL-MI with large STEMIs, scheduled for primary percutaneous coronary intervention (PCI) within 30% of the left ventricle) exhibited significantly reduced IS/MaR in the hypothermia group (40.5, 27.0-57.6 vs. 55.1, 41.1-64.4, median, IQR; hypothermia n=42 vs. control n=37, p=0.03), while patients with MaR<30% did not show effect of hypothermia (35.8, 28.3-57.5 vs. 38.4, 27.4-59.7, median, IQR; hypothermia n=15 vs. control n=19, p=0.50). The prespecified pooled analysis of RAPID MI-ICE and CHILL-MI indicates a reduction of myocardial IS and reduction in heart failure by 1-3 hours with endovascular cooling in association with primary PCI of acute STEMI predominantly in patients with large area of myocardium at risk. (ClinicalTrials.gov id NCT00417638 and NCT01379261).

45 citations

Journal ArticleDOI
TL;DR: In the setting of rt-PA treatment, hypothermia reduces brain hemorrhage, and BBB disruption, suggesting that combination therapy with mild Hypothermia and rT-PA appears safe.
Abstract: Therapeutic hypothermia has shown neuroprotective promise, but whether it can be used to improve outcome in stroke has yet to be determined in patients. Recombinant tissue plasminogen activator (rt-PA) is only given to a minority of patients with acute ischemic stroke, and is not without risk, namely significant brain hemorrhage.We explored whether mild hypothermia, in combination with rt-PA, influences the safety of rt-PA. Mice were subjected to middle cerebral artery occlusion (MCAO) using a filament model, followed by 24 hours reperfusion.Two paradigms were studied. In the first paradigm, cooling and rt-PA treatment began at the same time upon reperfusion, whereas in the second paradigm, cooling began soon after ischemia onset, and rt-PA began after rewarming and upon reperfusion. Experimental groups included: tPA treatment at normothermia (37°C), rt-PA treatment at hypothermia (33°C), no rt-PA at normothermia, and no rt-PA treatment at hypothermia. Infarct size, neurological deficit scores, blood brain barrier (BBB) permeability, brain hemorrhage, and expression of endogenous tissue plasminogen activator (tPA) and its inhibitor, plasminogen activator inhibitor (PAI-1) were assessed. For both paradigms, hypothermia reduced infarct size and neurological deficits compared to normothermia, regardless of whether rt-PA was given. rt-PA treatment increased brain hemorrhage and BBB disruption compared to normothermia, and this was prevented by cooling. However, mortality was higher when rt-PA and cooling were administered at the same time, beginning 1–2 hours post MCAO. Endogenous tPA expression was reduced in hypothermic mice, whereas PAI-1 levels were unchanged by cooling. In the setting of rt-PA treatment, hypothermia reduces brain hemorrhage, and BBB disruption, suggesting that combination therapy with mild hypothermia and rt-PA appears safe.

43 citations

Journal ArticleDOI
TL;DR: It is concluded that scientific support as a first-tier therapy for the use of therapeutic hypothermia in TBI patients for both adults and children still lacks scientific support, but it may still be an option as a second- tier therapy for refractory intracranial hypertension.
Abstract: Great expectations have been raised about neuroprotection of therapeutic hypothermia in patients with traumatic brain injury (TBI) by analogy with its effects after heart arrest, neonatal asphyxia, and drowning in cold water. The aim of this study is to review our present knowledge of the effect of therapeutic hypothermia on outcome in children and adults with severe TBI. A literature search for relevant articles in English published from year 2000 up to December 2013 found 19 studies. No signs of improvement in outcome from hypothermia were seen in the five pediatric studies. Varied results were reported in 14 studies on adult patients, 2 of which reported a tendency of higher mortality and worse neurological outcome, 4 reported lower mortality, and 9 reported favorable neurological outcome with hypothermia. The quality of several trials was low. The best-performed randomized studies showed no improvement in outcome by hypothermia-some even indicated worse outcome. TBI patients may suffer from hypothermia-induced pulmonary and coagulation side effects, from side effects of vasopressors when re-establishing the hypothermia-induced lowered blood pressure, and from a rebound increase in intracranial pressure (ICP) during and after rewarming. The difference between body temperature and temperature set by the biological thermostat may cause stress-induced worsening of the circulation and oxygenation in injured areas of the brain. These mechanisms may counteract neuroprotective effects of therapeutic hypothermia. We conclude that we still lack scientific support as a first-tier therapy for the use of therapeutic hypothermia in TBI patients for both adults and children, but it may still be an option as a second-tier therapy for refractory intracranial hypertension.

43 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202324
202242
202140
202031
201924
201829