scispace - formally typeset
Search or ask a question
Institution

China Agricultural University

EducationBeijing, China
About: China Agricultural University is a education organization based out in Beijing, China. It is known for research contribution in the topics: Population & Gene. The organization has 38610 authors who have published 35140 publications receiving 727521 citations. The organization is also known as: China Agricultral University & Zhōngguó Nóngyè Dàxué.
Topics: Population, Gene, Soil water, Irrigation, Chemistry


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: The emergence of MCR-1 heralds the breach of the last group of antibiotics, polymyxins, by plasmid-mediated resistance, in Enterobacteriaceae and emphasise the urgent need for coordinated global action in the fight against pan-drug-resistant Gram-negative bacteria.
Abstract: Summary Background Until now, polymyxin resistance has involved chromosomal mutations but has never been reported via horizontal gene transfer. During a routine surveillance project on antimicrobial resistance in commensal Escherichia coli from food animals in China, a major increase of colistin resistance was observed. When an E coli strain, SHP45, possessing colistin resistance that could be transferred to another strain, was isolated from a pig, we conducted further analysis of possible plasmid-mediated polymyxin resistance. Herein, we report the emergence of the first plasmid-mediated polymyxin resistance mechanism, MCR-1, in Enterobacteriaceae. Methods The mcr-1 gene in E coli strain SHP45 was identified by whole plasmid sequencing and subcloning. MCR-1 mechanistic studies were done with sequence comparisons, homology modelling, and electrospray ionisation mass spectrometry. The prevalence of mcr-1 was investigated in E coli and Klebsiella pneumoniae strains collected from five provinces between April, 2011, and November, 2014. The ability of MCR-1 to confer polymyxin resistance in vivo was examined in a murine thigh model. Findings Polymyxin resistance was shown to be singularly due to the plasmid-mediated mcr-1 gene. The plasmid carrying mcr-1 was mobilised to an E coli recipient at a frequency of 10 −1 to 10 −3 cells per recipient cell by conjugation, and maintained in K pneumoniae and Pseudomonas aeruginosa . In an in-vivo model, production of MCR-1 negated the efficacy of colistin. MCR-1 is a member of the phosphoethanolamine transferase enzyme family, with expression in E coli resulting in the addition of phosphoethanolamine to lipid A. We observed mcr-1 carriage in E coli isolates collected from 78 (15%) of 523 samples of raw meat and 166 (21%) of 804 animals during 2011–14, and 16 (1%) of 1322 samples from inpatients with infection. Interpretation The emergence of MCR-1 heralds the breach of the last group of antibiotics, polymyxins, by plasmid-mediated resistance. Although currently confined to China, MCR-1 is likely to emulate other global resistance mechanisms such as NDM-1. Our findings emphasise the urgent need for coordinated global action in the fight against pan-drug-resistant Gram-negative bacteria. Funding Ministry of Science and Technology of China, National Natural Science Foundation of China.

3,647 citations

Journal ArticleDOI
TL;DR: Animal and human studies demonstrate that adequate protein nutrition is crucial for the maintenance of GSH homeostasis, and compelling evidence shows that GSH synthesis is regulated primarily by gamma-glutamylcysteine synthetase activity, cysteine availability, and GSH feedback inhibition.
Abstract: Glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) is the most abundant low-molecular-weight thiol, and GSH/glutathione disulfide is the major redox couple in animal cells. The synthesis of GSH from glutamate, cysteine, and glycine is catalyzed sequentially by two cytosolic enzymes, gamma-glutamylcysteine synthetase and GSH synthetase. Compelling evidence shows that GSH synthesis is regulated primarily by gamma-glutamylcysteine synthetase activity, cysteine availability, and GSH feedback inhibition. Animal and human studies demonstrate that adequate protein nutrition is crucial for the maintenance of GSH homeostasis. In addition, enteral or parenteral cystine, methionine, N-acetyl-cysteine, and L-2-oxothiazolidine-4-carboxylate are effective precursors of cysteine for tissue GSH synthesis. Glutathione plays important roles in antioxidant defense, nutrient metabolism, and regulation of cellular events (including gene expression, DNA and protein synthesis, cell proliferation and apoptosis, signal transduction, cytokine production and immune response, and protein glutathionylation). Glutathione deficiency contributes to oxidative stress, which plays a key role in aging and the pathogenesis of many diseases (including kwashiorkor, seizure, Alzheimer's disease, Parkinson's disease, liver disease, cystic fibrosis, sickle cell anemia, HIV, AIDS, cancer, heart attack, stroke, and diabetes). New knowledge of the nutritional regulation of GSH metabolism is critical for the development of effective strategies to improve health and to treat these diseases.

3,096 citations

Journal ArticleDOI
19 Feb 2010-Science
TL;DR: A meta-analysis of a regional acidification phenomenon in Chinese arable soils that is largely associated with higher N fertilization and higher crop production is presented, likely to threaten the sustainability of agriculture and affect the biogeochemical cycles of nutrients and also toxic elements in soils.
Abstract: Soil acidification is a major problem in soils of intensive Chinese agricultural systems. We used two nationwide surveys, paired comparisons in numerous individual sites, and several long-term monitoring-field data sets to evaluate changes in soil acidity. Soil pH declined significantly ( P + ) per hectare per year, and base cations uptake contributed a further 15 to 20 kilomoles of H + per hectare per year to soil acidification in four widespread cropping systems. In comparison, acid deposition (0.4 to 2.0 kilomoles of H + per hectare per year) made a small contribution to the acidification of agricultural soils across China.

2,736 citations

Journal ArticleDOI
Shusei Sato, Satoshi Tabata, Hideki Hirakawa, Erika Asamizu  +320 moreInstitutions (51)
31 May 2012-Nature
TL;DR: A high-quality genome sequence of domesticated tomato is presented, a draft sequence of its closest wild relative, Solanum pimpinellifolium, is compared, and the two tomato genomes are compared to each other and to the potato genome.
Abstract: Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera1 and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium2, and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness.

2,687 citations


Authors

Showing all 38865 results

NameH-indexPapersCitations
Yang Gao1682047146301
Hua Zhang1631503116769
Bin Liu138218187085
Chao Zhang127311984711
Bin Wang126222674364
Guoyao Wu12276456270
Bo Wang119290584863
Fusuo Zhang10760945024
Johan Six10744749016
Fei Wang107182453587
Lin Li104202761709
George F. Gao10279382219
Hans Lambers9659537809
Lu Qi9456654866
Xiaodong Xu94112250817
Network Information
Related Institutions (5)
Wageningen University and Research Centre
54.8K papers, 2.6M citations

93% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

91% related

Chinese Ministry of Education
48.2K papers, 782.7K citations

91% related

University of Guelph
50.5K papers, 1.7M citations

90% related

Zhejiang University
183.2K papers, 3.4M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023118
2022617
20213,992
20203,379
20193,111