scispace - formally typeset
Search or ask a question
Institution

RIKEN Brain Science Institute

FacilityWako, Japan
About: RIKEN Brain Science Institute is a facility organization based out in Wako, Japan. It is known for research contribution in the topics: Population & Artificial neural network. The organization has 1895 authors who have published 4401 publications receiving 224311 citations. The organization is also known as: RIKEN-BSI.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that intraflagellar transport 20 mediates the ability of Ror2 signaling to induce the invasiveness of tumors that lack primary cilia, and IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex.
Abstract: Signaling through the Ror2 receptor tyrosine kinase promotes invadopodia formation for tumor invasion. Here, we identify intraflagellar transport 20 (IFT20) as a new target of this signaling in tumors that lack primary cilia, and find that IFT20 mediates the ability of Ror2 signaling to induce the invasiveness of these tumors. We also find that IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex, which promotes Golgi ribbon formation in achieving polarized secretion for cell migration and invasion. Furthermore, IFT20 promotes the efficiency of transport through the Golgi complex. These findings shed new insights into how Ror2 signaling promotes tumor invasiveness, and also advance the understanding of how Golgi structure and transport can be regulated.

13,354 citations

Journal ArticleDOI
TL;DR: Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction.
Abstract: Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia, and trigger an innate immune response characterised by release of inflammatory mediators, which contribute to disease progression and severity. Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity, are likely to interfere with immunological processes of the brain and further promote disease progression. Modulation of risk factors and targeting of these immune mechanisms could lead to future therapeutic or preventive strategies for Alzheimer's disease.

3,947 citations

Journal ArticleDOI
TL;DR: The development of an improved version of YFP named Venus, which contains a novel mutation, F46L, which at 37°C greatly accelerates oxidation of the chromophore, the rate-limiting step of maturation and will enable fluorescent labelings that were not possible before.
Abstract: The green fluorescent protein (GFP) from the jellyfish Aequorea victoria has provided a myriad of applications for biological systems Over the last several years, mutagenesis studies have improved folding properties of GFP (refs 1,2) However, slow maturation is still a big obstacle to the use of GFP variants for visualization These problems are exacerbated when GFP variants are expressed at 37 degrees C and/or targeted to certain organelles Thus, obtaining GFP variants that mature more efficiently is crucial for the development of expanded research applications Among Aequorea GFP variants, yellow fluorescent proteins (YFPs) are relatively acid-sensitive, and uniquely quenched by chloride ion (Cl-) For YFP to be fully and stably fluorescent, mutations that decrease the sensitivity to both pH and Cl- are desired Here we describe the development of an improved version of YFP named "Venus" Venus contains a novel mutation, F46L, which at 37 degrees C greatly accelerates oxidation of the chromophore, the rate-limiting step of maturation As a result of other mutations, F64L/M153T/V163A/S175G, Venus folds well and is relatively tolerant of exposure to acidosis and Cl- We succeeded in efficiently targeting a neuropeptide Y-Venus fusion protein to the dense-core granules of PC12 cells Its secretion was readily monitored by measuring release of fluorescence into the medium The use of Venus as an acceptor allowed early detection of reliable signals of fluorescence resonance energy transfer (FRET) for Ca2+ measurements in brain slices With the improved speed and efficiency of maturation and the increased resistance to environment, Venus will enable fluorescent labelings that were not possible before

2,830 citations

Journal ArticleDOI
TL;DR: The reactivation of this process, and subsequent recovery of function in conditions such as amblyopia, can now be studied with realistic circuit models that might generalize across systems.
Abstract: Neuronal circuits in the brain are shaped by experience during 'critical periods' in early postnatal life. In the primary visual cortex, this activity-dependent development is triggered by the functional maturation of local inhibitory connections and driven by a specific, late-developing subset of interneurons. Ultimately, the structural consolidation of competing sensory inputs is mediated by a proteolytic reorganization of the extracellular matrix that occurs only during the critical period. The reactivation of this process, and subsequent recovery of function in conditions such as amblyopia, can now be studied with realistic circuit models that might generalize across systems.

1,984 citations


Authors

Showing all 1903 results

NameH-indexPapersCitations
Susumu Tonegawa15041679814
Hideyuki Okano128116967148
Chu-Xia Deng12544457000
Katsuhiko Mikoshiba12086662394
Yoshihide Hayashizaki119721101464
Takashi Saito112104152937
Hiroyuki Aburatani11069959178
Shigeyuki Yokoyama107111349711
Andrzej Cichocki9795241471
Atsushi Miyawaki9138239410
Shun-ichi Amari9049540383
Takaomi C. Saido9035227802
Subburaman Mohan8646129023
Shigeyoshi Itohara8525127656
Andrew J. Martin8481936203
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

88% related

University of California, San Diego
204.5K papers, 12.3M citations

88% related

National Institutes of Health
297.8K papers, 21.3M citations

88% related

University of Tokyo
337.5K papers, 10.1M citations

88% related

Kyoto University
217.2K papers, 6.5M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20232
202233
202143
202049
201958
2018170