scispace - formally typeset
Open AccessJournal ArticleDOI

Experimental Realization of an Intrinsic Magnetic Topological Insulator

TLDR
In this paper, the experimental realization of thin films of an intrinsic magnetic topological insulator, MnBi 2 Te 4, by alternate growth of a Bi 2 Te 3 quintuple layer and a MnTe bilayer with molecular beam epitaxy was reported.
Abstract
An intrinsic magnetic topological insulator (TI) is a stoichiometric magnetic compound possessing both inherent magnetic order and topological electronic states. Such a material can provide a shortcut to various novel topological quantum effects but remained elusive experimentally for a long time. Here we report the experimental realization of thin films of an intrinsic magnetic TI, MnBi 2 Te 4 , by alternate growth of a Bi 2 Te 3 quintuple layer and a MnTe bilayer with molecular beam epitaxy. The material shows the archetypical Dirac surface states in angle-resolved photoemission spectroscopy and is demonstrated to be an antiferromagnetic topological insulator with ferromagnetic surfaces by magnetic and transport measurements as well as first-principles calculations. The unique magnetic and topological electronic structures and their interplays enable the material to embody rich quantum phases such as quantum anomalous Hall insulators and axion insulators at higher temperature and in a well-controlled way.

read more

Citations
More filters
Journal ArticleDOI

Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4

TL;DR: This work probes quantum transport in MnBi2Te4 thin flakes—a topological insulator with intrinsic magnetic order that becomes ferromagnetic when the sample has an odd number of septuple layers and establishes MnBi 2Te4 as an ideal arena for further exploring various topological phenomena with a spontaneously broken time-reversal symmetry.
Journal ArticleDOI

Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator

TL;DR: This work investigates the quantum transport of both bulk crystal and exfoliated MnBi 2 Te 4 flakes in a field-effect transistor geometry and observes a large longitudinal resistance and zero Hall plateau, which are characteristics of an axion insulator state.
Journal ArticleDOI

Prediction and observation of an antiferromagnetic topological insulator.

TL;DR: In this paper, an intrinsic antiferromagnetic topological insulator, MnBi2Te4, is theoretically predicted and then realized experimentally, with implications for the study of exotic quantum phenomena, such as quantized magnetoelectric coupling and axion electrodynamics.
Journal ArticleDOI

2D materials for quantum information science

TL;DR: In this article, the authors discuss the quantum properties and potential of 2D materials as solid-state platforms for quantum-dot qubits, single-photon emitters, superconducting qubits and topological quantum computing elements.
Journal ArticleDOI

High-Chern-number and high-temperature quantum Hall effect without Landau levels.

TL;DR: The experimental discovery of high-Chern-number QHE (C = 2) without Landau levels and C = 1 Chern insulator state displaying a nearly quantized Hall resistance plateau above the Néel temperature in MnBi2Te4 devices is reported.
References
More filters
Journal ArticleDOI

Colloquium: Topological insulators

TL;DR: In this paper, the theoretical foundation for topological insulators and superconductors is reviewed and recent experiments are described in which the signatures of topologically insulators have been observed.
Journal ArticleDOI

Topological insulators and superconductors

TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Journal ArticleDOI

Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface

TL;DR: In this article, first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Bi2Se3, SbSe3 and BiSe3 were performed.
Journal ArticleDOI

Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the 'Parity Anomaly'

TL;DR: A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization of the Hall conductance in the absence of an external magnetic field, and exhibits the so-called "parity anomaly" of (2+1)-dimensional field theories.
Related Papers (5)