scispace - formally typeset
K

Ken Inoki

Researcher at University of Michigan

Publications -  102
Citations -  27015

Ken Inoki is an academic researcher from University of Michigan. The author has contributed to research in topics: PI3K/AKT/mTOR pathway & mTORC1. The author has an hindex of 55, co-authored 95 publications receiving 23298 citations. Previous affiliations of Ken Inoki include Shiga University of Medical Science & Life Sciences Institute.

Papers
More filters
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy

Daniel J. Klionsky, +1287 more
- 01 Apr 2012 - 
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

TSC2 mediates cellular energy response to control cell growth and survival.

TL;DR: It is described that TSC2 is regulated by cellular energy levels and plays an essential role in the cellular energy response pathway and its phosphorylation by AMPK protect cells from energy deprivation-induced apoptosis.
Journal ArticleDOI

TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling

TL;DR: It is shown that TSC1–TSC2 inhibits the p70 ribosomal protein S6 kinase 1 and activates the eukaryotic initiation factor 4E binding protein 1 (4E-BP1, an inhibitor of translational initiation) and these functions are mediated by inhibition of the mammalian target of rapamycin (mTOR).
Journal ArticleDOI

Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling

TL;DR: The data demonstrate that Rheb acts downstream of TSC1/TSC2 and upstream of mTOR to regulate cell growth and plays an essential role in regulation of S6K and 4EBP1 in response to nutrients and cellular energy status.
Journal ArticleDOI

TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth

TL;DR: Results show that, in addition to transcriptional activation, Wnt stimulates translation and cell growth by activating the TSC-mTOR pathway, and the sequential phosphorylation of TSC2 by AMPK and GSK3 reveals a molecular mechanism of signal integration in cell growth regulation.