scispace - formally typeset
C

Chang Hwa Jung

Researcher at University of Minnesota

Publications -  82
Citations -  12123

Chang Hwa Jung is an academic researcher from University of Minnesota. The author has contributed to research in topics: Autophagy & White adipose tissue. The author has an hindex of 29, co-authored 71 publications receiving 9475 citations. Previous affiliations of Chang Hwa Jung include Korea University & Kyung Hee University.

Papers
More filters
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy

Daniel J. Klionsky, +1287 more
- 01 Apr 2012 - 
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

mTOR regulation of autophagy

TL;DR: This review discusses the recent advances in understanding of the mechanism by which TOR regulates autophagy with focus on mammalian TOR (mTOR) and its regulation of the Autophagy machinery.
Journal ArticleDOI

ULK-Atg13-FIP200 Complexes Mediate mTOR Signaling to the Autophagy Machinery

TL;DR: It is identified that mTOR phosphorylates a mammalian homologue of Atg13 and the mammalian Atg1 homologues ULK1 and ULK2, which demonstrate that the ULK-Atg13-FIP200 complexes are direct targets of mTOR and important regulators of autophagy in response to mTOR signaling.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

Daniel J. Klionsky, +2983 more
- 08 Feb 2021 - 
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Journal ArticleDOI

The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14

TL;DR: A key molecular event is defined for the starvation-induced activation of the ATG14-containing PtdIns3K complex by ULK1, and hierarchical relations between the ULK 1 activation and other autophagy proteins involved in phagophore formation are demonstrated.