scispace - formally typeset
W

Won-Ki Huh

Researcher at Seoul National University

Publications -  64
Citations -  20237

Won-Ki Huh is an academic researcher from Seoul National University. The author has contributed to research in topics: Saccharomyces cerevisiae & Bimolecular fluorescence complementation. The author has an hindex of 24, co-authored 61 publications receiving 18305 citations. Previous affiliations of Won-Ki Huh include University of California, San Francisco.

Papers
More filters
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

Daniel J. Klionsky, +2522 more
- 21 Jan 2016 - 
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy

Daniel J. Klionsky, +1287 more
- 01 Apr 2012 - 
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Global analysis of protein localization in budding yeast

TL;DR: The construction and analysis of a collection of yeast strains expressing full-length, chromosomally tagged green fluorescent protein fusion proteins helps reveal the logic of transcriptional co-regulation, and provides a comprehensive view of interactions within and between organelles in eukaryotic cells.
Journal ArticleDOI

Global analysis of protein expression in yeast

TL;DR: A Saccharomyces cerevisiae fusion library is created where each open reading frame is tagged with a high-affinity epitope and expressed from its natural chromosomal location, and it is found that about 80% of the proteome is expressed during normal growth conditions.