scispace - formally typeset
M

Mary E. Choi

Researcher at Cornell University

Publications -  9
Citations -  9592

Mary E. Choi is an academic researcher from Cornell University. The author has contributed to research in topics: Medicine & Internal medicine. The author has an hindex of 3, co-authored 4 publications receiving 8231 citations. Previous affiliations of Mary E. Choi include Harvard University.

Papers
More filters
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

Daniel J. Klionsky, +2522 more
- 21 Jan 2016 - 
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy

Daniel J. Klionsky, +1287 more
- 01 Apr 2012 - 
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

Daniel J. Klionsky, +2522 more
- 01 Jan 2016 - 
TL;DR: Author(s): Klionsky, DJ; Abdelmohsen, K; Abe, A; Abedin, MJ; Abeliovich, H; A Frozena, AA; Adachi, H, Adeli, K, Adhihetty, PJ; Adler, SG; Agam, G; Agarwal, R; Aghi, MK; Agnello, M; Agostinis, P; Aguilar, PV; Aguirre-Ghis
Journal ArticleDOI

Multi-omic comparative analysis of COVID-19 and bacterial sepsis-induced ARDS

TL;DR: It is speculated that combination therapy targeting two or more of these processes may ameliorate thrombocytosis-mediated hypercoagulation and highlight the potential of JAK inhibitors to improve outcomes in bacterial sepsis-induced ARDS.