scispace - formally typeset
J

J. Paul Taylor

Researcher at St. Jude Children's Research Hospital

Publications -  147
Citations -  39625

J. Paul Taylor is an academic researcher from St. Jude Children's Research Hospital. The author has contributed to research in topics: Stress granule & Neurodegeneration. The author has an hindex of 71, co-authored 145 publications receiving 33111 citations. Previous affiliations of J. Paul Taylor include National Institutes of Health & Howard Hughes Medical Institute.

Papers
More filters
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

Daniel J. Klionsky, +2522 more
- 21 Jan 2016 - 
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy

Daniel J. Klionsky, +1287 more
- 01 Apr 2012 - 
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes

Daniel J. Klionsky, +235 more
- 16 Feb 2008 - 
TL;DR: A set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes are presented.
Journal ArticleDOI

Phase Separation by Low Complexity Domains Promotes Stress Granule Assembly and Drives Pathological Fibrillization

TL;DR: It is demonstrated that the disease-related RBP hnRNPA1 undergoes liquid-liquid phase separation (LLPS) into protein-rich droplets mediated by a low complexity sequence domain (LCD), and suggested that LCD-mediated LLPS contributes to the assembly of stress granules and their liquid properties.
Journal ArticleDOI

Decoding ALS: from genes to mechanism

TL;DR: Extraordinary progress in understanding the biology of ALS provides new reasons for optimism that meaningful therapies will be identified, and emerging themes include dysfunction in RNA metabolism and protein homeostasis, with specific defects in nucleocytoplasmic trafficking.