scispace - formally typeset
N

Nicholas J. Talbot

Researcher at University of East Anglia

Publications -  253
Citations -  33445

Nicholas J. Talbot is an academic researcher from University of East Anglia. The author has contributed to research in topics: Appressorium & Magnaporthe grisea. The author has an hindex of 71, co-authored 240 publications receiving 29205 citations. Previous affiliations of Nicholas J. Talbot include Sainsbury Laboratory & University of Exeter.

Papers
More filters
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

Daniel J. Klionsky, +2522 more
- 21 Jan 2016 - 
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy

Daniel J. Klionsky, +1287 more
- 01 Apr 2012 - 
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes

Daniel J. Klionsky, +235 more
- 16 Feb 2008 - 
TL;DR: A set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes are presented.
Journal ArticleDOI

On the Trail of a Cereal Killer: Exploring the Biology of Magnaporthe grisea

TL;DR: Recent progress toward understanding the molecular biology of plant infection by M. grisea is reviewed, which involves development of a specialized cell, the appressorium, which generates enormous turgor pressure and physical force, allowing the fungus to breach the host cuticle and invade plant tissue.